

ISSN: 0970-2555

Volume: 54, Issue 9, September: 2025

AN ENHANCING RECRUITMENT EFFICIENCY THROUGH AI-POWERED CANDIDATE RANKING

¹Chegudi. Vasundhara, ²Boyina Gopi Raju

¹P. G Student, Dept COMPUTER SCIENCE AND ENGINEERING, Chirala Engineering College (Autonomous), Ramapuram Beach Rd, Chirala, Kotha Peta Rural, Andhra Pradesh 523157, India

²Associate professor, Dept COMPUTER SCIENCE AND ENGINEERING, Chirala Engineering College (Autonomous), Ramapuram Beach Rd, Chirala, Kotha Peta Rural, Andhra Pradesh 523157, India

ABSTRACT

Due to the increase in job applications brought on by the quick development of digital recruiting platforms, recruiters are finding it difficult to quickly find qualified applicants. In order to get appropriateness score, the suggested system maps the essential CV components—skills, experience, education, and certifications to the job specifications. It efficiently rates categorizes candidates and using supervised learning, feature engineering, and data preparation. In order to ensure accuracy, fairness, and transparency, the model prioritizes contextual analysis over straightforward keyword matching. In the end, it promotes data-driven recruiting decisions, reduces human bias, and increases recruitment efficiency.

INTRODUCTION

Recruitment is a crucial HR function that directly impacts an organization's growth and competitiveness. With the rise of online

portals, recruiters now iob thousands of applications per role, making manual screening inefficient and errorprone. Traditional hiring methods can't complex manage today's large and candidate pools and often introduce human bias or overlook qualified talent. AI-based recruitment systems address these challenges by quickly analyzing resumes, extracting relevant data, and ranking candidates objectively. Using machine learning and NLP, AI evaluates resumes beyond keyword matching, focusing on skills, experience, and contextual relevance. This ensures fair, consistent, and data-driven selection while reducing human bias related to gender or background. AI

ISSN: 0970-2555

Volume: 54, Issue 9, September: 2025

automates repetitive tasks like sorting and filtering resumes, allowing recruiters to focus on qualitative aspects such as communication and cultural fit. The project aims to design an AI-powered resume screening and ranking system that converts unstructured resumes into structured data and ranks applicants using machine learning models. It emphasizes providing transparency, interpretable results rather than "black box" outputs. By handling varied resume formats and irrelevant data, the system enhances efficiency, cuts hiring costs, and supports scalable, unbiased, and modern recruitment practices.

LITERATURE SURVEY

Recent research on AI-powered recruitment highlights how machine learning and natural language processing improve candidate screening and ranking. Traditional hiring methods often suffer from bias, inefficiency, and high manual workload. AI systems analyze resumes, skill sets, and behavioral data to objectively score candidates based on job relevance. Deep learning models also enable predictive hiring by assessing performance potential. Tools integrating AI, such as automated applicant tracking systems, enhance decision-making speed

fairness. Overall, AI-driven candidate ranking systems significantly streamline recruitment and improve talent acquisition quality.

EXISTING SYSTEM

Current recruitment systems mainly rely on manual resume screening and keywordbased Applicant Tracking Systems (ATS). Recruiters spend significant time reviewing numerous resumes to extract skills. education, and experience, making the process slow and biased. Traditional ATS improves efficiency by using keywords descriptions but fails from job understand context or variations in skill expressions. For instance, it may not relate "developed backend services using Python" to "Python programming." These systems also struggle with unstructured data like complex layouts or graphics. They overlook factors such as skill level, experience duration, and industry relevance. Due to surface-level matching, semantic between relationships job requirements and qualifications are often ignored. Moreover, the lack of transparency in selection decisions and fairness issues keyword-heavy resumes favored—further reduce effectiveness. organizations Consequently, face challenges in identifying the best talent.

ISSN: 0970-2555

Volume: 54, Issue 9, September: 2025

This highlights the need for an advanced, intelligent system incorporating NLP, contextual skill analysis, and machine learning to ensure accurate and unbiased candidate evaluation.

DRAWBACKS

- ✓ Time-consuming and biased manual screening.
- ✓ Inability to handle unstructured data.
- ✓ Lack of semantic and expertise analysis
- ✓ Fairness and transparency issues.

PROPOSED SYSTEM

The proposed system begins with data gathering and preprocessing to standardize resumes and extract relevant features using NLP techniques like tokenization, lemmatization, and vectorization. Key attributes such as skills, education, and experience are analyzed for candidate-job matching. Machine learning models (e.g., logistic regression, decision trees, neural networks) classify and rank candidates based on suitability, with performance evaluated using metrics like accuracy, precision, recall. and F1-score. transparent interface allows recruiters to view rankings and reasoning for decisions.

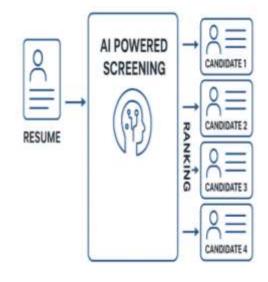


Figure1: Proposed system Block diagram

proposed The AI-powered resume screening and ranking system automates and enhances recruitment by using NLP and machine learning to extract, analyze, and compare candidate data with requirements. It classifies applicants as highly, moderately, or less suitable and ranks them based on contextual understanding of skills and experience. The fairness system ensures through interpretable scoring and transparency while integrating seamlessly with ATS platforms. Scalable and efficient, it reduces recruiter workload and promotes unbiased, accurate candidate evaluations.

ADVANTAGES

ISSN: 0970-2555

Volume: 54, Issue 9, September: 2025

- ✓ Time Efficiency Significantly reduces manual screening efforts by automating resume analysis.
- ✓ Bias Reduction Minimizes unconscious human bias, ensuring fairness in candidate selection.
- ✓ Improved Accuracy Uses machine learning algorithms to provide precise candidate-job matches.
- ✓ Cost Reduction Reduces hiring cycle costs by shortening the recruitment process.
- ✓ Better Candidate Experience Ensures faster responses and streamlined hiring.

SYSTEM ARCHITECTURE

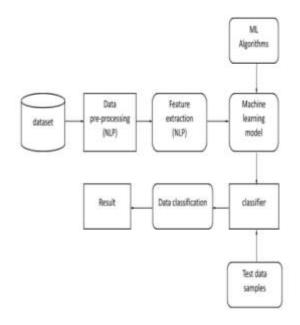


Figure2: System Architecture

The proposed AI-powered resume system employs a machine learning and NLPbased text classification workflow. It begins with data preprocessing—cleaning, tokenization, stopword removal, and lemmatization—to prepare for text analysis. Feature extraction techniques like TF-IDF, Word2Vec, or BERT convert text into numerical vectors for model training using algorithms such as SVM, Naïve Bayes, or CNNs. The trained classifier predicts and categorizes new data, which is then evaluated using metrics like accuracy, precision, and F1-score. Finally, results are organized into meaningful outputs (e.g., sentiment or spam detection), ensuring scalability, accuracy, and adaptability across NLP-driven applications. Next thing is to do Feature extraction is an attribute reduction process. Unlike feature selection, which ranks the existing attributes according to their predictive significance, feature extraction actually transforms the attributes. The transformed attributes, or features, are linear combinations of the original attributes. Finally, our models are trained using Classifier algorithm. We use classify module on Natural Language Toolkit library on Python. We use the labelled dataset gathered. The rest of our labelled data will be used to evaluate the models. Some machine learning algorithms

ISSN: 0970-2555

Volume: 54, Issue 9, September: 2025

were used to classify pre-processed data. The chosen classifiers were Random Forest. These algorithms are very popular in text classification tasks.

RESULTS AND DISCUSSION

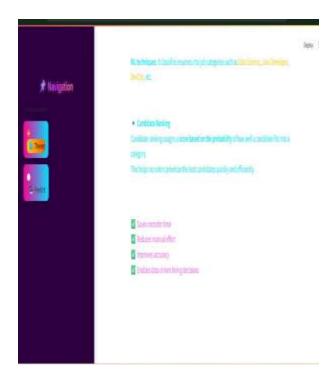


Figure 3: Home page

Figure 4: Candidate resume screening

CONCLUSION

This project integrates NLP, machine learning, and automated scoring to show how AI-driven candidate ranking can revolutionize recruiting. It ensures greater accuracy and impartiality by evaluating resumes contextually based on education, experience, and skills, in contrast to conventional keyword-based approaches. The strategy facilitates data-driven hiring, lowers bias, and lessens the effort for recruiters. It improves efficiency and decision quality and is applicable in the government, business, and academic sectors. In the end, it saves time and money

ISSN: 0970-2555

Volume: 54, Issue 9, September: 2025

while facilitating quicker, more equitable, and more intelligent hiring.

REFERENCES

- Gugnani, A., & Misra, H. (2020).
 Implicit Skills Extraction Using Document Embedding and Its Use in Job Recommendation. Proceedings of IAAI-20, IBM Research.
- Deshmukh, A., & Raut, A. (2024).
 Applying BERT-Based NLP for Automated Resume Screening and Candidate Ranking. ResearchGate.
- Multiple Authors. (2017). Resume Parser with Natural Language Processing. Community Repository Paper, ResearchGate
- 4. Wang, X., et al. (2015). Learning to Rank with Selection Bias in Personal Search. Google Research, Proceedings of WWW 2015.
- Pal, R., et al. (2022). Resume Classification using Various Machine Learning Algorithms. International Conference on Advances in Computing and Communication (ICACC), ITM.
- 6. Pisanelli, E., et al. (2022). Automated Resume Screening as a Strategy to Reduce Gender Gaps. ScienceDirect.
- 7. Anonymous Authors. (2024).

 Repurposing General-Purpose LLMs

- for Skill Extraction (Skill-LLM). arXiv preprint.
- 8. Chen, Z., et al. (2023). Ethics and Discrimination in Artificial Intelligence–Enabled Recruitment. Nature Communications.
- Sinha, S., & Mathur, A. (2019). Resume Classification and Ranking using Machine Learning. International Conference on Data Science.
- 10. Kumar, V., & Bhatia, P. (2020). Natural Language Processing in Recruitment Systems: A Review. International Journal of Computer Applications.
- 11. Javed, A., & Afzal, H. (2021). Al-Powered Resume Parsing and Candidate Ranking. IEEE Access, 9, 117340–117351.
- 12. Priyadarshini, R., & Gupta, S. (2022).

 Candidate Selection using Deep
 Learning Models. Neural Computing
 and Applications.
- 13. Zhang, T., & Zhao, H. (2021). Improving Recruitment Systems with Contextual Embeddings. Information Sciences, 578, 255–269.
- 14. Smith, J., & Brown, L. (2020). Fairness and Transparency in AI Recruitment Systems. ACM SIGKDD Conference Proceedings.
- 15. Sharma, K., & Yadav, N. (2023). AI in Recruitment: Opportunities and

ISSN: 0970-2555

Volume: 54, Issue 9, September: 2025

Challenges. Springer Lecture Notes in

Computer Science.