
Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 11, November : 2024

UGC CARE Group-1

 7

FPGAIMPLEMENTATION OF A HIGH SPEED

AND LOW AREA AES ARCHITECTURE
Gottam Mounika

1
 | P Chandhra Sekhar

2

1
PG Scholar, Dept. of ECE, Quba College of Engineerig, Nellore.

2
Assistant Professor, Dept. of ECE, Quba College of Engineering, Nellore.

mounikamow13@gmail.com
1
, sekharp21@gmail.com

2

Abstract
A crucial component of data storage and communication is data security. In a variety of

industries, including the military and medical, cryptographic algorithms have been used to offer high-

level security against all types of unwanted accesses. Globally, the most secure cryptographic

algorithm is the Advanced Encryption Standard (AES), a symmetric cryptographic algorithm. The

original architecture was proposed by two Belgian researchers, Joan Daemen and Vincent Rijment,

and underwent several modifications. The current changes are meant to improve speed and security.

This work suggests a pipelined architecture that is effective in reducing the propagation delay to

generate the necessary sub keys during the key expansion process. The key expansion portion of the

AES architecture also uses the fork and join architecture in addition to the pipeline structure, which

greatly shortens the time needed to generate the necessary subkeys.

I. INTRODUCTION
The society is becoming more and

more digitalized therefore. Information

security is becoming more important than

ever. The need for each individual to identify

them self in a digital way has spawn eda wide

variety of challenges, such as, how to avoid

fraud. Biometric data as finger interior is scan

is one way of identification, however in order

to use the data that is reliable for identification

purposes the data must stay confidential, for

that reason information security is important.

The biometric data is typically sampled by a

physical terminal and the data is transmitted to

a centralized server through a unsecured

network for verification, in order to protect the

data is encryption needed as soon as possible

in the data path thus in the terminal. The

physical terminal that samples the biometric

data must have enough computational power

to encrypt the data fast and reliable in a cost-

efficient way. Further low power consumption

is a requirement for hand held terminals.

However biometric data can be rather large,

e.g. a passport image with the resolution 3300

x 4400 is 42.5MB uncompressed or 14.2MB

with lossless JPEG compression.

The problem of implementing encryption with

image application has puzzled research over

the last decade. The encryption is often

required to be real time yet the processing

cannot be do neat a central server. The

literature provides several suggestion show to

overcome this problem, e.g. partial encryption

of the fingerprint. However, this approach

might not be feasible for iris scan or voice

recognition and complete encryption could be

necessary to have sufficient security.

There are clear advantages by using a

standard encryption algorithm for the image

application. The reliability is well tested and

the data can be shared between different

platforms encryption standards such as DES

(Data Encryption Standard),3DES (Triple Data

Encryption Standard) and AES (Advanced

Encryption Standard)are standardized by

National Institute of Standards and

Technology. However, the mentioned

encryption algorithms require many

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 11, November : 2024

UGC CARE Group-1

 8

calculations steps and storage of partial results

in order to encrypt the data. Therefore is a

CPU (Central Processing Unit) not ideal for

this type of tasks, since it require many cycles

for the CPU toper for them encryption

calculations. Previous studies have showed

that encryption can be performed much fast

using a FPGA (Field Programmable Gate

Array) compared to a CPU.

The CPU is a dedicated logical circuit

designed to execute instruction and calculation

in a sequential order. The FPGA is a

programmable logic circuit which means that

is function of is not fixed after the silicon

fabrication. The device consists of thousands

of “building block” called CLB (configurable

logic blocks), each of CLB can be individually

be configured to a specific logic function and

each of the CLB can(with some limitation) be

connected to any other CLB through the

routing network. A typical FPGA architecture,

the CLB slices are located in a matrix pattern

and is surrounded by several different types of

dedicated blocks; multipliers, Block random

access memory (BRAM) and digital controlled

clocking managers (DCM). The configuration

of the components and their interconnectivity

implements the actual functionality of the

FPGA.

Implementation of AES128 bit algorithm

on FPGA boards for Alter a devices uses

VHDL code. At first it was recommended by

Rijndael on Oct-2000. Cryptography is the art

and science of protecting information from

undesirable individuals by converting it into a

form non- recognizable by its attackers while

stored and transmitted. The aim of this project

is to reduce the time, area and power

consumption. In order to implement the

pipelined architecture is used to speed up the

processing and run at very high speed. It is

possible by introducing lookup tables instead

of multipliers. And it is possible to construct

196 and 256 bit AES Algorithm. But it leads

very complex circuitry and low end is very

applicable in the present market. The AES

algorithm is implemented in FPGA (Field

Programmable Gate Array) for ease of

operation in increased frequency. This project

utilizes the Quartus II software simulation tool

and synthesizer.

Quartus II Simulator too lisenas lo guest

Electronic Design Automation(EDA) and is

similar to ECAD Software. Category of

Standard is Information Security Standard,

Cryptography. Explanation is about The

Advanced Encryption Standard(AES) specifics

FIPS-approved cryptographic algorithm that

can be used to protect electronic data. The

AES algorithm is a symmetric block cipher

that can encrypt (encipher) and decrypt

(decipher) information. Encryption converts

data to an unintelligible form called ciphertext;

decrypting the cipher text converts the data

back into its original form, called plaintext and

is implemented for high-speed devices of

altera in order to obtain high debugging

options. It is very compact to find whenever

the problem occurs. The AES algorithm is

capable of using cryptographic keys of 128,

192, and 256 bits to encrypt and decrypt data

in blocks of 128 bits. In this project 128-bit

input and cipher key size is used. Applicability

is all online services are using this algorithm

for Example online State Bank of India. The

strength of an FPGA compared to a CPU is

that many smaller circuits can be implemented

to run in parallel, while the CPU is a native

sequential circuit. The partial results for the

encryption can be calculated in parallel and

combined later stage, reducing the number of

cycles required significantly. The FPGA

cannot run at the same clock frequencies as a

modern CPU (which is in the GHz range), the

FPGA runs typically with an internal

processing clock of 250-2500 MHz

Despite the lower clock frequency an

FPGA process data much faster than a CPU,

due to parallel processing capabilities, thus

encrypts data at a high rate. The ideal

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 11, November : 2024

UGC CARE Group-1

 9

technology for implementing AES in hardware

is ASIC (Application specific integrated

circuit). Here is it possible to custom design

your chip to the application and achieving

speeds that are superior to both CPU and

FPGA. However, the cost of design an ASIC

far exceeds the scope of this project both in

development time and production cost.

Therefor is the second-best choice the FPGA.

This AES algorithm was implemented in so

many languages like C, C++, JAVA and

VHDL. In this project it is implemented in

VHDL code.

1.1 BLOCKDIAGRAM FOR AES

STREAM CIPHER

Figure1.1 AES block diagram of encryption

and decryption

1.2 BLOCK

AES is a block cipher. This means that the

number of bytes that it encrypts is

fixed.AEScancurrentlyencryptblocksof16bytes

atatime;nootherblocksizesarepresentlya part of

the AES standard. If the bytes being encrypted

are larger than the specified block then AES is

executed concurrently. This also means that

AES has to encrypt a minimum of 16 bytes. If

the plain text is smaller than 16 bytes then it

must be padded. Simply said the block is a

reference to the bytes that are processed by the

algorithm.

1.3 STATE

Defines the current condition (state) of the

block that is the block of bytes that are

currently being worked on. The state starts off

being equal to the block, however it changes

as each round of the algorithms executes.

Plainly said this is the block in progress. XOR

Refers to the bitwise operator Exclusive OR,

XOR operates on the individual bits in a byte

in the following way:

0XOR 0 =0,

1XOR 0=1,

1XOR 1 =0,

 0XOR 1 =1

For example, the Hex digits

D4XORFF1101010XOR11111111=00101011

(Hex2B) Another interesting property of the

XOR operator is that it is reversible. So Hex

2BXORFF = D4. Most programming

languages have the XOR operator built in.

 HEX

It defines a notation of numbers in base 16.

This simply means that; the highest number

that can be represented in a single digit is 15,

rather than the usual 9 in the decimal (base10)

system.

Table1.1 Hex to Decimal

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

A 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

B 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

C 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

D 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 11, November : 2024

UGC CARE Group-1

 10

For example, using the above table 1.1

HEX D4 = DEC 212. All of the tables and

examples are written in HEX. There as on for

this is that a single digit of Hex represents

exactly 4 bits. This means that a single byte

can always be represented by HEX digits. This

also makes it very useful in creating lookup

tables where each HEX digit can represent a

table index.

II. LITERATURESURVEY

This project will focus on

implementation AES in a FPGA which is a

standardized algorithm that is recognized

by the literature. The image data for

encryption is biometric samples e.g. finger

print images. The chosen architectures

Xilinx Kintex 27,since this FPGA family

is the market leader on performance versus

power versus price. The Kintex27 utilizes

28 nm die technology, which is minimize

the dynamic power consumptions

compared to previous 40 nm die

technology. The implementation should be

portable to similar architectures, thus be

compatible with Artix27 and Virtex27.

The project includes performance

measurements of the implementation, in

respect to encryption speed, power

consumption and data integrity.

Figure2.1Block Diagram

The host starts by loading the master key into

the master key register. The hosts ends the test

data to the host interface through RS232

(Serial single2ended data and control

interface).The host interface loads the data

block into the input buffer.

The AES starts the encryption when a block

of data is ready in the buffer. The data is

loaded through a wide fast interface to avoid

band width problems. The AES encrypts the

data and sends the result to the output buffer,

the host interface transfers the finished block

back to the PC for integrity analysis. The

analysis monitor sends the performance

statistics back to the PC for further analysis.

HIGH PERFORMANCE AES FPGA

IMPLANTATIONS

Rahimun is a et al describing the

Parallel sub pipelined (PSP) architecture. The

PSP architecture uses 128 bit data blocks

which are divided into four blocks of 32 bit,

each of these 32 bit blocks are process Edina

parallel, in order to achieve high through put.

The architecture is a mix of parallel and

sequential processing, which has achieved a

high efficiency. The design has been both

implement Edina Virtex 26LX75T FPGA and

prototype dasan ASIC design. The through put

achieved on Virtex 26LX75T was 59.59Gb/s,

the area used was 2597 slices, giving an

efficiency of 22.94 Mb/slice. The results was

retrieved be simulating the design using Model

Sim (VHDL/Verilog simulator). The work

included power simulations for130 nm and

180 nm ASIC die technology.

[27]Liu, Xu and Yuan published real

time AES encryption was in focus. The paper

describes a 66.1Gb/s fully pipelined AES

128bit FPGA implementation. The FPGA was

implemented on the new Xilinx Virtex27

VX690T device, they achieved 66.1 Gb/s

using 3436 slices thus achieving an efficiency

of 19.20 Mb/Slice. The latency of the design is

22 clock cycles at a clock running at 516

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 11, November : 2024

UGC CARE Group-1

 11

MHZ, which is equal to 426 us. The paper

further suggest to run two AES kernels in

order to break the 100Gb/s barrier, this should

be possible with the chosen target, since only a

fraction of the slices are used. The design was

only simulated and no power estimations were

performed.

 [9]This FPGA implementation of AES

encryption as counter mode for 256 bits data

width was done by Balwinder Singh, Harpreet

Kaur and Himanshu Monga in 2010.They

achieved to encrypt at 52.6124 Gbit/s with a

master key length of 256 bits. The design was

implemented in Xilinx Spartan 3, Xilinx

Virtex II and Xilinx Virtex E devices.

Manoj and Manjula implemented AES

128 bit as an image application in a Xilinx

Spartan 3 device in 2012. The design was

similar to what others have done, expect that

the design could take 8 bit input (data pixels)

and unroll them to 128 bit, which is a trivial

task. The encryption throughput was 882.46

Mb/s, the efficiency was 0.53Mb/slice and the

latency was 24 clocks. The article includes

plots with the

relationbetweencorevoltageandpowerconsumpt

ionsforthedevice.However,thesedrawingswere

not commented and no power estimate of the

design was made.

The literature review has revealed a

knowledge gap so far there has been little

focus on power consumption. The reason

could be that the published designs are only

conceptual and the problem of reducing power

consumption is left out for further research.

III. PROPOSEDMETHOD

AES ALGORITHM

AES as well as most encryption

algorithms is reversible. This means that

almost the same steps are performed to

complete both encryption and decryption in

reverse order. The AES algorithm operates on

bytes, which makes its impler to implement

and explain. This key is expanded into

individual sub keys, a subkeys for each

operation round. This process is called

Encryption.

Figure3.1 Internal Structure of AES

AES ENCRYPTION

Each round of processing includes one

single-byte based substitution step, a row-wise

permutation step, a column-wise mixing step,

and the addition of the round key. The order in

which these four steps are execute dis different

for encryption and decryption.

Figure3.2 Structure of AES

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 11, November : 2024

UGC CARE Group-1

 12

Figure3.3 AES Encryption

ADD ROUND KEY

 Takes 128-bit (16-byte) key and

expands into array of 44/52/6032-

bitword

 Start by copying key into first 4 words

Then loop creating words that depend

on values in previous & 4 places back

in 3 of 4 cases just XOR the set

together.

 1
st
 word in 4 has rotate + S-box +

XOR round constant on previous,

before XOR 4
th
back. The goal of the

substitution step is to reduce the

correlation between the input bits and

the output bits at the bit level.

Figure3.4 Add Round Key

Each of the 16 bytes of the state is XORed

against each of the 16 bytes of a portion of the

expanded key for the current round. The

Expanded Key bytes are never reused. So once

the first 16 bytes are XOR ed against the first

16 bytes of the expanded key the n the

expanded key bytes 1-16 are never used again.

The next time the Add Round Key function is

called bytes 17-32 are XOR ed against the

state.

The first time Add Round Key gets executed

State

Table3.1AddRoundKey

The second time Add Round Key is executed

Table3.2Add Round Key

And so on for each round of execution. During

decryption this procedure is reversed.

Therefore the state is first XOR ed against the

last16 bytes of the expanded key, then the

second last 16 bytes and so on. Theme trod for

deriving the expanded key is described.

SUB BYTES

The Sub Bytes() transformation is a

non-linear byte substitution that operates

independently on each byte of the State

using a substitution table (S-box). This

Show which is invertible, is constructed by

composing two transformations S-BOX

During encryption each value of the state

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

X

OR

X

OR

X

OR

X

OR

X

OR

X

OR

X

OR

X

OR

X

OR

X

OR

X

OR

X

OR

X

OR

X

OR

X

OR

X

OR

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

XO

R

XO

R

XO

R

XO

R

XO

R

XO

R

XO

R

XO

R

XO

R

XO

R

XO

R

XO

R

XO

R

XO

R

XO

R

XO

R

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 11, November : 2024

UGC CARE Group-1

 13

is replaced with the corresponding S-BOX

value.

AESS-BoxLookupTable.

Table3.3 Substitution Box

For example: -HEX 19 would get replaced

with HEXD4.

During decryption each value in the state is

replaced with the corresponding inverse of the

S-BOX.

Table3.4InverseS-Box

For example HEX D4would get replaced with

HEX19

SHIFT ROW

1. A circular byte shift in each

1
st
row is un changed

2
nd

 row does 1 byte circular shift to left

3
rd

 row does 2 byte circular shift to left

4
th
 row does 3 byte circular shift to left

Decrypt inverts using shifts to right

Since state is processed by columns, this

stepper mutes bytes between the columns

Figure3.5 Shift Row

Arranges the state in a matrix and then

performs a circular shift for each row. This is

not a bitwise shift. The circular shift just

moves each byte one space over. A byte that

was in the second position may end up in the

third position after the shift. The circular part

of it specifies that the byte in the last position

shifted one space will end up in the first

position in the same row. The state is arranged

in a 4x4 matrix (square).

The confusing part is that the matrix is formed

vertically but shifted horizontally. So the first

4 bytes of the state will form the first bytes in

each row.

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

𝐛𝐲𝐭𝐞𝟎 𝐛𝐲𝐭𝐞𝟒 𝐛𝐲𝐭𝐞𝟖 𝐛𝐲𝐭𝐞𝟏𝟐

𝐛𝐲𝐭𝐞𝟏 𝐛𝐲𝐭𝐞𝟓 𝐛𝐲𝐭𝐞𝟗 𝐛𝐲𝐭𝐞𝟏𝟑

𝐛𝐲𝐭𝐞𝟐 𝐛𝐲𝐭𝐞𝟔 𝐛𝐲𝐭𝐞𝟏𝟎 𝐛𝐲𝐭𝐞𝟏𝟒

𝐛𝐲𝐭𝐞𝟑 𝐛𝐲𝐭𝐞𝟕 𝐛𝐲𝐭𝐞𝟏𝟏 𝐛𝐲𝐭𝐞𝟏𝟓

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 52 09 6A D5 30 36 A5 38 VF 40 A3 9E 81 F3 D7 FB

1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB

2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E

3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25

4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92

5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84

6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06

7 D0 2C 1E 8F CA 3F 0F 02 C1 AF VD 03 01 13 8A 6B

8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73

9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E

A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B

B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4

C 1F DD A8 33 88 07 C7 31 B1 12 10 59 29 80 EC 5F

D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF

E A0 E0 3B 4D AE 2A F5 B0 C8 DB BB 3C 83 53 99 61

F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 11, November : 2024

UGC CARE Group-1

 14

So bytes 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16

Will form a matrix:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

Each row is then moved over (shifted) 1,2or3

spaces over to the right, depending on the row

of the state. First row is never shifted

Row10

Row 21

Row 32

Row 43

The following table show show the individual

bytes are first arranged in the table and then

move dover (shifted).

Blocks 16 bytes long:

 From To

During decryption the same process is

reversed and all rows are shifted to the left

 From To

The Mix Columns() transformation operates

on the State column-by-column, treating each

column as a four-term polynomial.

Figure3.6 Mix Column

This is perhaps the hardest step to both

understand and explain. There are two parts to

this step. The first will explain which parts of

the state are multiplied against which parts of

the matrix. The state is arranged into a 4 row

table (as described in the Shift Row

function).The multiplication is performed one

column at a time (4bytes). Each value in the

column is eventually multiplied against every

value of the matrix (16total multiplications).

The results of these multiplications are XORed

together to produce only 4 result bytes for the

next state. Therefore 4 bytes input, 16

multiplications 12XORs and 4 bytes output.

The multiplication is performed one matrix

row at a time against each value of a state

column.

AESDECRYPTION

For decryption, each round consists of the

following four steps

INVERSESHIFTROWS

DuringdecryptionisdenotedInvShiftRowsforIn

verseShiftRowsTransformation.The goal of

this transformation is to scramble the byte

order inside each 128-bit block. For

decryption, the corresponding step shifts the

rows in exactly the opposite fashion. The first

row is left unchanged, the second row is

shifted to the right by one byte, the third row

to the right by two bytes, and the last row to

the right by three bytes, all shifts being

circular.

INVERSESUBSTITUTEBYTES

The corresponding substitutions tepused

during decryption is called Inv Sub Bytes.

ADDROUNDKEY

The corresponding step during decryption

is denoted In v Add Round Key for inverse

add round key transformation

 1 5 9 13 1 5 9 13
2 6 10 14 14 2 6 10
3 7 11 15 11 15 3 7

 MIXCOLUMN

4 8 12 16 8 12 16 4

1 5 9 13 1 5 9 13
2 6 10 14 6 10 14 2
3 7 11 15 11 15 3 7
4 8 12 16 16 4 8 12

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 11, November : 2024

UGC CARE Group-1

 15

INVERSEMIXCOLUMNS

The corresponding transformation during

decryption is denoted In v Mix Columns and

stands for inverse mix column transformation.

The goal is here is to further scramble up the

128-bit input block. The third step consists of

XORing the output of the previous two steps

with four words from the key schedule. Note

the differences between the order in which

substitution and shifting operations are carried

out in a decryption round vis-a-vis the order in

which similar operations are carried out in an

encryption round. The last round for

encryption does not involve the “Mix

columns” step. The last round for decryption

does not involve the “Inverse mix columns”

step.

During decryption the Mix Column the

multiplication matrix is changed to:

Other then the change to the matrix table the

function performs the same steps as during

encryption.

IV. AES KEY EXPANSION

ALGORITHM

Assuming a 128-bit key, the key is also

arranged in the form of a matrix of 4 × 4bytes.

As with the input block, the first word from

the key fills the first column of the matrix, and

so on. Prior to encryption or decryption the

key must be expanded. The expanded key is

used in the Add Round Key function defined

above. Each time the Add Round Key function

is called a different part of the expanded key is

XOR ed against the state. In order for this to

work the Expanded Key must be large enough

so that it can provide key material for every

time the Add Round Key function is executed.

The Add Round Key function gets called for

each round as well as one extra time at the

beginning of the algorithm.

Therefore the size of the expanded key

will always be equal to:16 * (number of

rounds + 1). Each round has its own round key

that is derived from the original 128-

bitencryption key in the manner described in

this section. One of the four steps of each

round, for both encryption and decryption,

involves XORing of the round key with the

state array. The AES Key Expansion algorithm

is used to derive the 128- bit round key for

each round from the original 128-bit

encryption key. As you’ll see, the logic of the

key expansion algorithm is designed to ensure

that if you change one bit of the encryption

key, it should affect the round keys for several

rounds. In the same manner as the 128-bit

input block is arranged in the form of a state

array, the algorithm first arranges the 16 bytes

of the encryption key in the form of a4×4 array

of bytes,

The 16 in the above function is

actually the size of the block in bytes. This

provides key material for every byte in the

block during every round+1.

𝖴

 𝐰𝟎 𝐰𝟏

0𝐸 0𝐵 0𝐷 09
09 0𝐸 0𝐵 0𝐷
0𝐷 09 0𝐸 0𝐵
0𝐵 0𝐷 09 0𝐸

k0 k4 k8 k12
k1 k5 k9 k13
k2 k6 k10 k14
k3 k7 k11 k15

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 11, November : 2024

UGC CARE Group-1

 16

𝐰𝟐 𝐰𝟑

The first four bytes of the encryption key

constitute the word w0, the next four bytes the

word w1, and so on.

The algorithm subsequently expands the words

[w0,w1,w2,w3] into a 44-word key schedule

that can be labelled w0, w1, w2, w3... w43.

Of these, the words [w0, w1, w2, w3] are

bitwise XOR ed with the input block before

the round-based processing begins. The

remaining 40 words of the key schedule are

used four words at a time in each of the 10

rounds. The above two statements are also true

for decryption, except for the fact that we now

reverse the order of the words in the key

schedule, The last four words of the key

schedule are bitwise XOR ed with the128-bit

cipher text block before any round-based

processing begins. Subsequently, each of the

four words in the remaining 40 words of the

key schedule are used in each of the ten rounds

of processing.

Now comes the difficult part: How

does the Key Expansion Algorithm expand

four words w0,w1, w2,w3 into the44 words.

w0,w1, w2, w3, w4, w5, ,w43

As shown in the figure, the key expansion

takes place on a four-word to four-word basis,

in the sense that each grouping of four words

decides what the next grouping off our words

will be

Figure4.1AES Key Expansion

The key expansion takes place on a four-word

to four-word basis as shown here

The Algorithmic Steps in Going from a 4-

Word Round Key to the Next 4-Word Round

Key. We now come to the heart of the key

expansion algorithm we talked about in the

previous section generating the four words of

the round key for a given round from the

corresponding four words of the round key for

the previous round. Let’s say that we have the

four words of the round key for the ith round:

FUNCTION

The function(s) that will return the 4 bytes

written to the effected expanded key bytes.

Notice that most numbers that change in

following tables match the current round

number. This makes implementation in code

much easier as these numbers can easily be

replaced with loop variables.

16BYTEKEYEXPANSION

Each round (except rounds 0, 1, 2 and 3) will

take the result of the previous round and

produce a 4 byte result for the current round.

Notice the first 4 rounds simply copy the total

of 16 bytes of the key. The functions of Key

Expansion are described

REALISATION OF AES

ARCHITECTURE

A new architecture for a high speed

AES encryption, decryption and combined

encryption and decryption using 128-bits key

size is presented. This architecture is

implemented using fully pipelining method.

This new architecture has shown greater

performance in terms of throughput and Area

comparing to previous pipelined AES

Cryptography. The proposed top module of

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 11, November : 2024

UGC CARE Group-1

 17

DESIGNFLOW

ENTITY

FITTINGANDASSEMBLING

AES Encryption is Similar to the existing

pipelined designs, the proposed structure first

uses loop unrolling to expand the 10-round

operations and adds registers between rounds,

forming a one pass data path for plain texts.

For Decryption the rounds will be 10 to1.

IMPLEMENTATION ASPECTS

It concerns FPGAs(Field

Programmable Gate Arrays). The basic FPGA

blocks, I/O, CLBs(Combinational Logic

Blocks), and routing architecture, are

discussed to impart a basic understanding of

FPGA operation. The static RAM

implementation method for the programming

elements of FPGAs. An in depth investigation

of one common static RAM chip ,I/O, CLB,

and routing configurations used in industry.

IMPLEMENTATION OF MIX

COLUMN IN MIX COLUMN

Four bytes in the corresponding position

in the four “rows” are used for matrix

multiplication in GF(2^8),which involves

byte-wise multiplication and addition. Byte

wise additions are easily VLSI Implementation

of Enhanced AES…www.ijceronline.com

Open Access Journal Page 56 done by XOR,

and several tricks are used for multiplications.

The architectural view of mix column. Circuit

Architecture of Mix Column. Byte-wise

multiplications include multiplying the data by

1, 2, and 3. Multiplying by 1 the data will

remain the same. For multiplication by 2, the 8

bit data is left shifted by 1 bit, and the LSB is

replaced by 0. Then the MSB of the original

data is used for comparison. If it is 0, then the

left shifted data is the result; if it is 1, then the

left shifted value is XORed with the reduction

polynomial, in this case 00011011, to generate

the result. For multiplication by 3 the original

byte is simply XORed with the result of

multiplication by 2. Using the above method,

the multiplication by 1, 2, and 3 of each of the

bytes in the data are determined. Then the

correct combinations of values are XORed

with each other to produce a new byte. The

same process goes on until allthe16 bytes in

the data are replaced.

V. ALTERA QUARTUS II

The Quartus II development software

provides a complete design environment for

FPGA designs. Design entry using schematics,

block diagrams of VHDL, and Verilog HDL.

Design analysis and synthesis, fitting,

assembling, and timing analysis, simulation

Figure5.1 Design Analysis

PIPELINEDARCHITECTUREFOREN

CRYPTER

The overall pipelined architecture for AES

Encryptor looks as shown below. It includes

Figure5.2 Pipelined Architecture

MULTIPLEXER(MUX)

In electronics, a multiplexer (or mux) is a

device that selects one of several analog or

digital input signals and forwards the selected

input into a single line. A multiplexer of 2
n

inputs has n select lines, which are used to

select which input line to send to the output.

TIMINGANALYSIS

SIMULATION

http://www.ijceronline.com/
http://www.ijceronline.com/

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 11, November : 2024

UGC CARE Group-1

 18

Multiplexers are mainly used to increase the

amount of data that can be sent over the

network with in a certain amount of time and

band width. A multiplexer is also called a data

selector.

Figure5.3 Variable Multiplexer

Figure5.4 Variable Mux

MULTIPLIERS

Multipliers play an important role in today’s

digital signal processing and various other

applications. With advances in technology,

many researchers have tried and are trying to

design multipliers which offer either of the

following design targets , high speed, low

power consumption, regularity of layout and

hence less area or even combination of the min

one multiplier thus making them suitable for

various high speed, low power and compact

VLSI implementation. The common

multiplication method is “add and shift”

algorithm. In parallel multipliers number of

partial products to be added is the main

parameter that determines the performance of

the multiplier. To reduce the number of partial

products to be added, Modified Booth

algorithm is one of the most popular

algorithms.

The salient features of the

AES ENCRYPTION/DECRYPTION are

summarized in the following manner:

HIGH THROUGH PUT

For fully Pipelined implementation, are a

requirements increase with larger Key Size but

through put (No. of blocks processed per

second) is unaffected.

PARAMETER FLEXIBILTY

Any combination of Key sizes and Block sizes

those are multiples of 32 bits can be

accommodated. As a result, number of rounds

can be modified.

IMPLENTATION FLEXIBILTY

Decryption can be implemented in same

structure as Encryption. (Though with

different components).

NOKNOWNSECURITYATTACK

Although it has received criticism due to its

simple mathematical structure.

VI. RESULTS & DISCUSSIONS

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 11, November : 2024

UGC CARE Group-1

 19

Figure6.1 Flow Summary

The AES3 program in Stratix 3 FPGA

initializes the hardware components for AES

encryption/decryption, loads the key, and

feeds input data for processing. The FPGA

executes the AES algorithm, including key

expansion, substitution, permutation, and XOR

operations. After processing, the program

retrieves the resulting ciphertext or plain text

from the FPGA. Finally, it cleans up resources

and prepares for subsequent operations.

Figure6.2 Contents of the RAM which stores

the AES encrypted version

The RAM storing an AES encrypted version

contains the cipher text, which is the encrypted

form of the original data. A long side the

cipher text, it may store the initialization

vector (IV) used during encryption.

Additionally, there might be temporary

variables, buffers, or keys involved in the

encryption process. These contents are

temporary and volatile, meaning they are

erased when power is removed from the

system or when the data is no longer

needed.

Figure6.3 Coverage Summary of AES

The coverage summary of AE Sin Quartus II

typically includes details on the synthesis,

implementation, and timing analysis stages. It

assesses how well the design meets specified

criteria such as area utilization, performance,

and timing constraints. This summary helps

ensure the design is optimized for efficient

FPGA implementation while meeting the

required cryptographic standards and

performance targets.

Figure 6.4 Simulation Wave forms which

shows the AES Key Generation

Simulation waveforms depicting AES key

generation show case the progressive

expansion of the initial key into a series of

round keys through operations such as key

scheduling, round constant addition, and

various transformations, providing a visual

representation of the key expansion process

overtime

Figure6.5 Simulation Waveform which shows

the clock and reset

To simulate waveforms for the clock and reset

signals of an AES Architecture, in this

typically use a hardware description language

(HDL) such as Verilog or VHDL along with a

simulation tool .

Figure6.6 Compilation Report of AES

algorithm

A compilation report on the AES algorithm

provides a detailed overview of its design,

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 11, November : 2024

UGC CARE Group-1

 20

implementation, security properties, and real-

world applications ,serving comprehensive

source for understanding this widely-used

encryption standard. It encompasses AES's

history, cryptographic operations, security

analysis, performance evaluation, and

comparisons with other encryption algorithms

VII. CONCLUSION
The present work provides with the basic

information needed to implement the AES

Encryption/Decryption algorithm for high

speed Altera Devices. The mathematics and

design reasons behind AES were purposely left

out. A FPGA implementation of area-

optimized AES algorithm which meets the

actual application is proposed in this project.

After being coded with VHDL Hardware

Description Language, the wave form

simulation of the new algorithm was taken in

the Quartus platform uses EDA Simulation

tool equal to ECAD Tool. Ultimately, a

synthesis simulation of the new algorithm has

been done. The AES algorithm was realized in

the Stratix–II device which aims for high

speed and it was achieved.

VIII. FUTURESCOPE
One could work on selection of a larger key

size which would make the algorithm is more

secure, and a larger input block to increase the

through put. The extra increase in area can

however be tole rated. So such an algorithm

with high level of security and high through

put can have ideal applications such as in

multimedia communications. Furthermore

study of optimization approaches for the

implementations supporting multiple key

lengths and modes of operation have

tremendous scope for future work.

One could require to port on hardware and to

be obtained at hardware outputs.

In this project I had the implementation of

AES Algorithm. We can extend this

implementation to image encryption and

decryption using AES algorithm.

Video encryption and decryption has to be

done.

Encryption and decryption along with

compression in which makes networks speeds

Better.

IX. REFERENCES

1. J. Daemen and V. Rijmen, AES Proposal:

Rijndael, AES Algorithm Submission,

September 3, 1999.

2. J. Daemen and V. Rijmen, The block ciphers

Rijndael, Smart Card research and

Applications, LNCS1820, Springer-Verlag,

pp.288-296.

3. A. Lee, NIST Special Publication 800-21,

Guide line for Implementing Cryptography in

the Federal Government, National Institute of

Standards andTechnology,November1999.

4. A. Menezes, P. vanOor schot, and S. Vanstone,

Hand book of Applied Cryptography, CRC

Press, New York, 1997, p. 81-83.

5. J. Nechvatal, et. al., Report on the

Development of the Advanced Encryption

Standard (AES), National Institute of

Standards and Technology, October 2,2000.

6. “Advanced Encryption Standard (AES)”

Federal Information Processing Standards

Publication 197, Nov. 2001

7. http://www.xilinx.com/appnotes/FPGA_NSRE

C98.pdf.

8. W. Kühnet.al., FPGA based Compute Nodes

for High Level Triggering in PANDA, Journal

of Physics: Conference Series 119 (2008)

022027.

9. James H. Wiebe, AES-128 implementation on

a Virtex-4 FPGA Proc. 2007 IEEE

International Symposium on Signal Processing

and Information Technology.

10. B. Singh, H. Kaur, and H. Monga FPGA

Implementation of AES Coprocessor in

Counter Mode proc pp. 491–496, 2010. ©

Springer-Verlag Berlin Heidelberg2010

http://www.xilinx.com/appnotes/FPGA_NSREC98.pdf.
http://www.xilinx.com/appnotes/FPGA_NSREC98.pdf.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 11, November : 2024

UGC CARE Group-1

 21

11. Song J. Park, “Analysis of AES Hardware

Implementations” Department of

Electrical& Computer Engineering Oregon

State University, Corvallis,

12. PRAVINB. GHEWARI, MRS.JAYMALA, K.

PATILAMITB. CHOUGULE,“ Efficient

Hardware Design and Implementation of AES

Cryptosystem” International Journal of

Engineering Science and Technology Vol. 2(3),

2010,213-219.

13. Panu Hamalainen, Marko Han Niskanen, Timo

Hamalainen, and Jukka Saarinen,

“HARDWARE IMPLEMENTATION OF THE

IMPROVED WEP AND RC4ENCRYPTION

ALGORITHMSFORWIRELESSTERMINAL

S”

14. Rijndael, N.Sklavosando. koufopavlou,”

architecture and VLSI implementations of the

AES-Proposal”, .IEEE TRANSACTIONS ON

COMPUTERS, VOL. 51,NO. 12,

DECEMBER 2002.“Utilizing hard cores of

modern FPGA devices for high-performance

cryptography” Tim Guneysu. J Crypto

grEng(2011)1:37–55DOI10.1007/s13389-011-

0002-2.

15. A. Mazzeo, L. Romano, G.P. suggese and

N.Mazzocca.2003. FPGA Implementation of a

Serial RSA Processor. Design. Proceedings of

the conference on Design, Automation and

Test in Europe-Volume 1.ISBN:0-7695-1870-

2.

16. A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar.

An FPGA implementation and performance

evaluation of the AES block cipher candidate

algorithm finalist. p[Online]. Available:

http://csrc.nist.gov/encryption/aes/round2/conf

3/aes3papers.html.

17. M. McLoone and J. V. McCanny, “Rijndael

FPGA implementation utilizing look-up

tables,” in IEEE Workshop on Signal

Processing Systems, Sept. 2001,pp. 349–360.

18. K.U. Jarvinen, M.T.Tommiska, and J.O.Skytta,

“A fully pipelined memoryless 17.8 Gbps

AES-128 encryptor,” in Proc. Int. Symp. Field

Programmable Gate Arrays (FPGA 2003),

Monterey, CA, Feb. 2003, pp.207–215.

19. G.P.Saggese, A.Mazzeo, N.Mazocca, and

A.G.M.Strollo,“An FPGA based performance

analysis of the unrolling, tiling and pipe lining

of the AES algorithm,” in Proc. FPL2003,

Portugal, Sept. 2003.

http://csrc.nist.gov/encryption/aes/round2/conf3/aes3paper
http://csrc.nist.gov/encryption/aes/round2/conf3/aes3paper
http://csrc.nist.gov/encryption/aes/round2/conf3/aes3paper
http://csrc.nist.gov/encryption/aes/round2/conf3/aes3paper

