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Abstract: Most of the existing systems are based on single-modal data along with traditional 

machine learning techniques, result in poor system performance and low adaptability against 

evolving threats. In this study, to address these challenges, a novel Multiple Modal Data Fusion 

approach combined with Reinforcement Learning (MMDF-RL) along with explainable AI 

technique is proposed. The proposed approach uses the multi-head attention mechanism to 

combine the outputs from network-traffic features, behavioral analytics and host-based metrics, 

thus incorporating multi-modal complicated relationships while also focusing on critical features. 

The performance of detecting malicious traffic is improved accordingly. Finally, feature 

selection is optimized through Proximal Policy Optimization(PPO), a reinforcement learning 

method that reduces the feature space by 60% while having zero impact on its performance. 

Variational Auto Encoders(VAE) are further used for unsupervised anomaly detection that can 

identify unseen threats with high precision. For more transparency, SHAP is used, which gives 

the per-instance explanation of the decisions made by the model. For performance evaluation, 

two data sets are adopted , one is CIRA-CIC-DoHBrw-2020 that consists of DOH encrypted 

traffic and another is CICIDS 2017 which has network traffic data sets. The proposed approach 

is evaluated and compared with the three contemporary models. The performance metrics yield 

better results than the other models. It outperforms others on most metrics, demonstrating high 

classification accuracy, precision, recall, F1-score and computational time. Additionally, SHAP 

explanations enhance model transparency and reduce the false positive rate, while providing 

interpretable insights for cybersecurity analysts. This integrated framework enhances both 

detection capability and model interpretability, which together form an end-to-end solution to 

detect and explain malicious DoH and network traffic in dynamic network environments. 

Keywords: Multiple Modal Data Fusion, Proximal Policy Optimization, Variational Auto 

Encoder, SHAP, Anomaly Detection 

 

1. Introduction 

The recent proliferation of encrypted internet traffic has been steadily making the job of traditional 

cybersecurity mechanisms difficult to accomplish. Among these protocols, Domain-over-HTTPS, 

widely referred to as DoH, protects domain name resolution requests sent by a client by encrypting 

them in the process. However, it acts like a two-edged sword because such a technique can also be 

deployed by attackers to mask their activities from traditional network security measures. The 

detection of anomalous or malicious traffic within encrypted streams, such as DoH, therefore, is of 

prime interest. Traditional detection mechanisms have been based mostly on one type of data or 

classical machine learning models, which are unable to cope with the dynamic and multifaceted 

nature of modern cyber threats. These systems rely on either network traffic features or host-based 

metrics in isolation, which leads to rather poor detection accuracy, with a high false positive rate 
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especially when novel, unseen attack vectors are encountered. Most of the traditional models are also 

"black boxes" that offer rather poor interpretability, which makes it difficult for security analysts to 

comprehend the underlying reasoning behind such classification decisions made by these systems. 

This lack of transparency has raised a number of concerns about the operational trustworthiness of 

such systems, especially in high-stakes environments where misclassification can lead to grave 

consequences. Faced with these challenges, the cyber security community has recognized the need to 

go beyond the state of the art to more advanced methods capable of fusing multiple data modalities 

and adapting dynamically to an ever-evolving threat landscape. In particular, besides information 

from various sources such as network traffic patterns, behavioral analytics, and host-based features, 

multimodal data fusion has emerged as one of the most promising techniques to enhance detection 

accuracy and robustness. Through the use of these different modalities, available complementary 

information will provide a better understanding of network behavior, hence allowing for anomalies 

that may be difficult to detect when a single source of data is used. 

In this context, this paper proposes a state-of-the-art integrated model for improving the detection of 

malicious encrypted traffic by fusing multi-modal data through the application of advanced feature 

selection and unsupervised learning. The core heart of this model is a multi-head attention 

mechanism adopted for the fusion of diverse inputs from network traffic, user behavior, and system 

metrics. Scaled multi-head attention mechanisms allow the model to learn several independent 

representations of the input, capturing nuanced interactions among different modalities, especially 

apt for the particular task. For example, whereas packet sizes and inter-arrival times may provide 

some indication of the nature of the traffic flow, domain query frequencies and time-of-day patterns 

within those query frequencies may be more indicative of the intent driving that flow. Weighing the 

importance of features across different modalities guarantees that, in each instance, the model 

focuses on the most relevant aspects of the data; this would actually enhance the capability for 

malicious behavior detection. Besides data fusion, the model employs Proximal Policy Optimization, 

a reinforcement learning algorithm for the purpose of feature selection optimization. The feature 

space might be huge and complicated for a common detection scenario, which could bring about 

other problems such as overfitting and reduced interpretability of the model. PPO handles this 

challenge by dynamically choosing the most informative subset of features from available data 

samples. By optimizing feature selection, the model not only reduces computation complexity but 

also enhances its generalization capability to work on a wide range of scenarios.  

In our experiment, PPO decreased the feature space from 50 to about 20 features-a reduction of 

roughly 60% without any loss in classification performance. This is an especially appealing 

reduction in cybersecurity applications, since both interpretability and the execution of real-time 

decisions are not compromised. For the detection of unseen threats, a VAE was used for 

unsupervised anomaly detection. Unlike the performance of the supervised model, which relies on 

labeled datasets and suffers when utilized to detect novel attacks, VAEs learn a probabilistic latent 

representation of normal traffic patterns by minimizing the reconstruction error between input data 

and their respective reconstructions. This learned distribution effectively acts to highlight traffic that 

is highly dissimilar from it as anomalous at inference time, which makes the VAE particularly 

effective in highlighting potential zero-day attacks or other novel threats. The experiments we have 

conducted show that the VAE achieved 92% precision and 88% recall in detection performance for 

malicious DoH traffic, hence proving quite effective in real-world settings. 

A limitation with many advanced architecture cybersecurity machine learning models is that they are 

not interpretable. Even when the results from these models are rather high in terms of accuracy, the 
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decisions themselves are essentially opaque, offering little by which a security analyst can 

understand why a prediction was made in a manner and, therefore, trust or validate it. The model 

proposed herein implements SHAP-a local explainability method that uses the terminology of 

cooperative game theory. In each case, SHAP assigns an importance value, called a SHAP value, to 

each feature that explains how each feature contributed to the final classification decision. It 

enhances not only interpretability but also reduces false positives since misclassifications due to 

specific feature values can also be identified. This reduces the total number of false positives by 

15%, a significant margin in our experiments in general. Our proposed model makes a great stride in 

the detection of encrypted malicious traffic by combining these state-of-the-art techniques: it 

leverages the advantages brought by multi-modal data fusion, reinforcement learning-based feature 

selection, and unsupervised learning to create a robust and adaptive system that can detect not only 

the known threats but also novel ones. Additionally, explainability by SHAP makes the decisions of 

the system interpretable and trustworthy for a human analyst, which is a necessary step for practical 

deployment in real-world settings. 

Motivation and Contribution: 

The motivation towards this work is due to the ever-increasing sophistication and complexity of 

cyber threats, especially in view of the encrypted traffic types such as Domain-over-HTTPS. The 

pervasiveness of encryption has left traditional cybersecurity measures scrambling to maintain their 

efficacy. Most especially, this is problematic for the detection systems dependent on single-modal 

data, as often they cannot tell in favor of subtle, multiple-faceted patterns indicative of malicious 

behavior. But traditional machine learning is equally rather powerful and acts mostly like a black 

box, whereby little or no explanation is provided for the decisions it reaches. This opaqueness 

discourages deployment in critical infrastructure, where interpretability and transparency will be 

needed to trust operation. These challenges motivate the need for an advanced interpretable, 

adaptable solution for encrypted traffic. Key contributions of this paper include the design and 

implementation of a comprehensive model that addresses these challenges using state-of-the-art 

techniques. First, we introduce the multi-head attention mechanism for multi-modal data fusion, 

where the model can grasp complex relationships across different data types, including network 

traffic, behavior analytics, and host-based metrics. That gives a more articulate and correct 

abstraction of network activities, hence enhancing malicious behavior detection. The feature 

selection is optimized by the employment of PPO. This decreases model complexity while incurring 

minimal loss in accuracy, thereby enhancing interpretability and allowing the system to function in 

real time. The most important thing is that our approach will make it possible, using a Variational 

Autoencoder for unsupervised anomaly detection, to reveal a threat which has not been seen before, 

whereas traditional supervised methods cannot solve this problem. Finally, we provide the system 

with explainable AI by incorporating SHAP into our design, giving us a very transparent decision-

making process. This improves trust and reduces the number of false positives so as to make the 

system more applicable to real-world applications. These are put together to provide a robust, 

flexible, and explainable solution for malicious activity detection in encrypted network traffic. 

The paper is organized as follows: The contemporary research papers for anomaly detection using 

ML and DL techniques are briefly discussed in Section 2.  In Section 3, the proposed integrated 

model is explained and the flow process is discussed. In section 4, the experimental results are 

analysed as per the empirical evaluation and are also compared with other three contemporary 

methods. Finally the conclusions and future scope of this work is discussed in section 5. 
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2. Literature Review 

Network anomaly detection has witnessed a couple of changes in recent times due to the ever-

evolving sophistication in current and emerging cyber-attacks. This review has shown various 

approaches ranging from traditional statistical models to advanced machine learning and deep 

learning-based techniques. Most of these methods try to overcome the challenges of real-time 

performance in scalable modern network environments and detect unseen attacks. If one carefully 

analyzes these works, he or she notices that each method is designed to have certain strengths and 

some limitations that complement each other in shaping the modern face of network security 

solutions. One of the most common methods in the literature can be observed within works like [2] 

and [9] based on the use of deep learning for anomaly detection. Deep learning models, in particular, 

those based on architectures such as GRU, GANs, and convolutional neural networks, showed much 

promise about their capability in relation to the modeling of complex patterns of network traffic. 

These models are really doing an excellent job in the extraction of high-level features from big and 

multidimensional datasets; hence, especially variance in finding unknown or sophisticated attacks 

has been really effective. For example, in, a heterogeneous ensemble learning approach that 

combined multiple deep learning models attained high accuracy of detection and focused on fine-

grained anomaly detection, really useful to detect unknown attacks in real time. However, deep 

learning models do have the drawbacks of high computational cost and large amounts of labeled 

data, which hinders their applicability in resource-constrained environments or situations 

characterized by a scarcity of labeled data. Traditional anomaly detection methods remain 

immensely useful in situations where simpler, interpretable models are required. These include 

various statistical models, such as time series analysis and correlation-based methods that identify 

deviations from normal behavior. Because these models generally tend to be less computationally 

expensive than deep learning-based methods, on the other hand, reliance upon fixed feature sets and 

inability to detect subtle or evolving patterns make them less well-suited for modern dynamic 

network environments. Nonetheless, they are still proud of scalability and interpretability advantages 

that are of utmost importance when the environment lacks computational resources or real-time 

decisions need to be made. 

 

Works such as [5] and [8] also considered unsupervised and semi-supervised learning approaches to 

anomaly detection, considering labeled datasets are hardly available in the cybersecurity domain. 

Unsuspecting methods, such as clustering and auto-encoders, hence model normal traffic patterns 

and flag deviations from them as anomalies. These techniques have particular value in an 

environment with frequent new attack types, wherein it would be highly impractical to depend on a 

fully supervised approach. For example, there is an unsupervised approach followed in [5] which is 

performing an effective detection of traffic anomalies that appear within backbone networks by 

leveraging cluster-based learning of patterns in network traffic and stochastic projections for feature 

space reduction. However, these may fail with a high false positive rate when noisy or incomplete 

data samples are used. A recurrent underlying theme in most of the works is to use feature extraction 

and/or dimensionality reduction techniques to optimize the features for performance improvement in 

anomaly detection models. Dimensionality reduction methods such as PCA, tensor sketching, and 

rough fuzzy granulation have been applied to [6], [10], and [23], respectively, reducing the 

dimensions of input data while retaining most of the relevant features for anomaly detection. These 

are particularly useful in high-dimensional data settings where the number of features is so large that 

it overflows conventional detection models and leads to overfitting. For instance, the tensor-sketch-

based approach in [6] illustrated that stream monitoring data could be compressed into lower-
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dimensional representations such that the model is able to detect anomalies in real time with bounded 

computation. These also risk losing important information in the process of dimensionality reduction, 

negatively affecting the model's performance on subtle anomaly detection. Explainability remains 

another key challenge in the process of network anomaly detection, especially for those contexts 

where complex models are put into consideration, such as deep learning. While the deep learning 

methods have usually outperformed the traditional approaches in terms of accuracy, their nature is 

not easy to be trusted or interpreted by the security analysts because of their "black-box" nature. On 

the other hand, papers like [14] and [25] have emphasized the incorporation of explainable AI 

techniques into anomaly detection systems in a way that assures that the decisions of such models are 

understandable and can be validated by a human operator. For instance, human-in-the-loop in [25] 

still required humans in decision-making to narrow down the model predictions through expert 

feedback. This can be problematic from the perspective of scalability, as systems dealing with large 

numbers or real-time applications will need massive human intervention in the process. 

Real-time anomaly detection has become increasingly necessary in modern network environments. 

For instance, papers such as [4], [12], and [13] developed methods able to detect anomalies in real 

time. It therefore allowed a rapid response against threats by minimizing detection latency. In-band 

network telemetry is a promising solution that might allow problem detection in real-time by 

embedding monitoring data within the network traffic, reducing overheads associated with out-of-

band monitoring techniques. The proposed real-time anomaly detection system in [13], on the other 

hand, did not only monitor the urban traffic but was integrated into balancing the loads that could 

assist in mitigating impacts of congestion when real scenarios are concerned. While these approaches 

are effective, their generalization to complex and large networks remains a significant challenge. The 

technical challenges notwithstanding, a number of papers pointed out the robustness of anomaly 

detection systems to be developed that would not be susceptible to adversarial attacks. -A poison-

resistant anomaly detection system in showed how semi-supervised learning could be utilized to 

mitigate the effects of poisoning attacks in encrypted traffic. The success rate for such an attack was 

subsequently reduced by about 17%, but adversarial learning methods are still in their infancy; much 

work remains to be done in order to ensure these models are resilient against all types of adversarial 

manipulations. The review of 25 research papers uncovers an enormous diversity of different 

methods and strategies of fighting the growing challenge of network anomaly detection-from deep 

learning models to more traditional statistical approaches-each with its strengths and weaknesses, 

hence offering a lot of insights on how modern cybersecurity systems might evolve in order to meet 

the demands of increasingly complex and dynamic network environments. These findings 

demonstrate that only deep learning GRU and GANs architecture-based approaches are capable of 

being very efficient for sophisticated unknown attack detection while being computationally 

expensive and requiring large labeled datasets; whereas traditional approaches can be scalable and 

interpretable but limited to subtle and time-evolving threats. 

 

The review has discussed works that show unsupervised and semi-supervised learning approaches to 

be strong solutions in solving the labeled data scarcity challenge that faces cybersecurity. However, 

these methods still stand to struggle with false positive rates and need robust feature extraction 

techniques to reduce high-dimensional network traffic data samples. Explanation with real-time 

detection remains some of the most critical challenges left for future studies of anomaly detection 

systems. While methods such as SHAP and human-in-the-loop architectures are promising in 

highlighting the transparency of model decisions, one open question remains scalability in large, 

complex networks. Real-time detection systems, for example, leveraging in-band network telemetry, 
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provides exciting opportunities for reduction in detection latency and response times; however, 

further exploration is needed in large-scale environments with high data volumes. Moreover, the 

review further emphasizes that the importance of adversarial robustness in anomaly detection 

systems is up-trending. Due to the increased sophistication of cyberattacks, model development 

capable of resisting adversarial manipulation, such as poisoning attacks, is an imperative task that 

will be required to safeguard network systems in the long run. Although adversarial learning 

methods have evolved over the last few years, a number of further developments are conceivable, 

and future research must be directed at the development of more robust models that show better 

resistance against a wider range of adversarial threats. 

3. Proposed MMDF-RL Model 

This section discusses the design of an integrated model using multiple modal data fusion and 

reinforcement learning for anomaly detection in encrypted traffic sets, so as to overcome the low 

efficiency & high complexity problems of the existing methods. According to figure 1, multi-head 

attention for data fusion refers to an elaborate technique in fusing multiple data modalities by 

learning unique features from each input source. The technique is quite suitable in detecting 

malicious network behavior because it allows the model to weigh the importance of diverse features 

coming from network traffic, behavioral analytics, and host-based metrics. This model obviously 

learns to attend to the critical aspects of each modality for producing a robust fused latent 

representation that will be used for classification tasks like distinguishing benign vs malicious traffic. 

The core of the multiple head attention mechanism is its ability to compute attention scores over 

different subsets of the input features. It then maps the input vectors in multiple modalities, including 

features of network traffic, Xn∈Rdn, features of behavioral analytics, Xb∈Rdb, and features of host-

based features, Xh∈Rdh, to query, key, and value vectors using learned linear transformations. 

Specifically, for each modality Xi where i∈{n,b,h,, taking the transformations defined via equations 

1, 2 & 3: 

𝑄𝑖 = 𝑊𝑞 ∗ 𝑋𝑖 … (1) 

𝐾𝑖 = 𝑊𝑘 ∗ 𝑋𝑖 … (2) 

𝑉𝑖 = 𝑊𝑣 ∗ 𝑋𝑖 … (3) 

Where, Wq∈R(dq×di), Wk∈R(dk×di), Wv∈R(dv×di) are learned weight matrices projecting the 

input features into query, key, and value spaces, respectively. These allow the model to capture a 

variety of aspects of the data through queries that search for relevant information in the keys and 

values representing the actual information carried by each modality. While doing this, it computes a 

weighted sum of the values Vi by calculating attention scores between the queries Qi and keys Ki in 

process. The attention score αij between a query Qi and key Kj is computed by using the scaled dot-

product attention formula via equation 4, 

𝛼𝑖𝑗 =
𝑒𝑥𝑝 (

𝑄𝑖𝐾𝑗𝑇

√𝑑𝑘
)

∑ 𝑒𝑥 𝑝 (
𝑄𝑖𝐾𝑗𝑇

𝑑𝑘
)𝑗

… (4) 

This equation represents the softmax function applied to the dot product of query and key vectors, 

scaled by the square root of the dimensionality of the key vectors dk which prevents extremely large 
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gradient updates during training. Attention weights αij are are weighted sum of the value vectors Vi 

across all heads and are estimated via equation 5, 

𝐴𝑖 = ∑ 𝛼𝑖𝑗 ∗ 𝑉𝑗

𝑗

… (5) 

This weighted sum Ai is the attended output for the 'i'-th input modality, this assists in capturing the 

most relevant information w.r.t the individual attention weights. Each head in a multihead attention 

mechanism independently computes such attention scores and corresponding attended outputs. The 

outputs coming out of all heads are concatenated and passed through a feed-forward neural network 

to produce the final fused latent representations. Formalizing it in terms of multiple heads, if there 

are 'h' attention heads, the concatenated output can be shown via equation 6, 

𝑍 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐴1, 𝐴2, … , 𝐴ℎ)𝑊𝑜 … (6) 

Where, Wo∈Rh(dv×dout) is a learned projection matrix mapping the concatenated attended outputs 

into the final latent space of dimension dout sets. This final representation 'Z', which combines the 

most informative features of each modality, is fed through one or more feed-forward layers and 

finally a classification layer that outputs a probability of the input to be malicious or benign. The 

authors of this work decided to use the multiple head attention mechanism for data fusion since it has 

the capability to learn several independent representations from different types of data. While classic 

methods rely on a simple concatenation of raw features or other primitive feature selection 

techniques, multiple head attention enables dynamic weighting of features and hence allows the 

model to emphasize different features across sets of instances. Especially in cybersecurity 

applications, this is useful, considering that the importance of some features is very different in 

nature from an attack point of view. Thus, by focusing on the most relevant features in each case, the 

model will be much better at picking up subtle patterns indicative of malicious activities. Moreover, 

multi-head attention also works well with other components of the whole system, such as 

reinforcement learning-based feature selection and anomaly detection based on the variational auto-

encoder. At the same time, while reinforcement learning selects the most informative features to 

optimize the feature space, multi-head attention learns even more to improve the optimal interaction 

of features in the process. This ensures that the model will have both high interpretability and 

performance even under complex dynamic environments. 

 

As shown in Figure 2, PPO has been taken to be a pretty robust reinforcement learning algorithm 

suitable for feature subset optimization under dynamic environments, such as network traffic 

analysis. The PPO-based model, in this regard, will choose the most optimal feature set fusion that 

incorporates network traffic metrics, behavior patterns, and host-based features such that a detection 

model achieves the best performance. It acts within the environment of the feature space and learns 

the optimal policy for selecting most useful features while balancing exploration-exploitation. The 

action space initially comprises binary decisions to include/exclude certain features within the set of 

'n' fused features. Let the feature set be represented as X∈Rn, where each element Xi is a 

representative of one particular feature. Note that the agent's policy would be parameterized by θ and 

represented as a stochastic policy by πθ(at∣st), where st represents the current state, i.e., the current 

subset of selected features at timestamp 't', and 'at' represents the action sets, which is a binary 

decision for feature selection. PPO is a reinforcement learning algorithm that maximizes the 

expectation of cumulative reward. The accuracy of the case of this model can be measured in terms 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 53, Issue 11, November : 2024 
 

UGC CARE Group-1                                                                                                          240 

 

 

of detection accuracy or F1-score, or other similar metrics. Now, regarding PPO, the optimization 

objective is to maximize the following surrogate function and is represented via equation 7, 

𝐿(𝜃) = 𝐸𝑡[𝑚𝑖 𝑛(𝑟𝑡(𝜃)𝐴’𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴’𝑡)] … (7) 

Where, rt(θ) is estimated via equation 8, 

𝑟𝑡(𝜃) =
𝜋𝜃( 𝑎𝑡 ∣ 𝑠𝑡 )

𝜋𝜃𝑜𝑙𝑑( 𝑎𝑡 ∣ 𝑠𝑡 )
… (8) 

Which gives the probability ratio between the new policy πθ and the old policy πθold, and A't is the 

advantage estimate, which indicates how much better the current action 'at' is compared to the 

baseline policy. The clipping term clip(rt(θ),1-ϵ,1+ϵ) ensures that the policy update does not deviate 

too much from the previous policy, hence stabilizing the learning process. This is crucial in the case 

of fused feature selection, where the feature space may be highly volatile, and large updates may lead 

to suboptimal features being selected. Here, the reward function would relate to performance metrics 

of the detection model, such as the detection accuracy Raccuracy, precision Rprecision, or F1-score 

RF1 sets. The reward of the selected feature subset at the timestamp ’t’ is represented as 'rt' 

computed via equation 9, 

𝑟𝑡 = 𝜆1 ∗ 𝑅𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑠𝑡) + 𝜆2 ∗ 𝑅𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑠𝑡) + 𝜆3 ∗ 𝑅𝐹1(𝑠𝑡) … (9) 

Where, λ1, λ2, λ3 are weight parameters that control the contribution of each metric w.r.t the overall 

rewards. The reward signal guides the PPO agent to pick up those feature subsets that will improve 

the classification performance levels. This reward signal is generated in the process and the policy is 

updated iteratively based on this signal. The gradient of the objective function L(θ) w.r.t the policy 

parameters θ is given via equation 10, 

𝛻𝜃𝐿(𝜃) = 𝐸𝑡[𝛻𝜃𝜋𝜃( 𝑎𝑡 ∣ 𝑠𝑡 )𝐴’𝑡] … (10) 

This gradient is the driver of the policy update, which would push the agent toward the actions-the 

feature selections-that provide the higher rewards. The estimate of advantage A't is computed by the 

method of generalized advantage estimation, yielding a smoothed estimate of the advantage by 

considering a weighted sum of temporal differences. The design of PPO for selecting fused features 

is highly suitable in dynamically evolving environments, say, network traffic, where the importance 

of different features may change along with time. Balancing exploration and exploitation ensures that 

continuously, the agent can adapt to new patterns in data and select such feature subsets that 

optimize performance without overfitting to a particular traffic scenario. The clipping mechanism of 

PPO prevents too large policy updates, which is crucial for maintaining stable performance in high-

dimensional feature spaces. The most critical reason for choosing PPO for the fused feature selection 

goes to its ability to handle high-dimensional action spaces including continuous and discrete 

decisions, an ideal choice for high dimensional feature spaces common for cybersecurity datasets & 

their samples.  

Any other reinforcement learning methods, like Q-learning or DQN, might face serious problems 

with instability or inefficiency applied to such environments. The policy gradient method combined 

with the surrogate objective function and clipping mechanism makes PPO far more stable and 

efficient in practice, especially in non-stationary environments. Feature selection, via PPO, enhances 

interpretability and efficiency from a complementary point of view with other elements of the 
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general system, such as a multiple head attention mechanism for data fusion and VAE for anomaly 

detection. By selecting a reduced but highly informative subset of features, the complexities of the 

downstream models are reduced, which allows for faster training and inference times without any 

loss in performance. Besides, by focusing on the most relevant features, PPO improves the 

generalization capabilities of those models to further detect attack patterns that may be unseen before 

with higher accuracy. This integration of reinforcement learning in feature selection would ensure 

the whole pipeline serves efficiently and effectively in real-time cybersecurity scenarios. 

 

Variational Autoencoder, a strong unsupervised learning model used for anomaly detection by 

learning the probabilistic latent representation of normal network traffic patterns is then applied. For 

anomaly detection on network traffic, such as DoH patterns, VAEs are best suited due to their 

potential in modeling the underlying data distribution and detecting deviations that signal anomalous 

behavior. The VAE framework works by learning from the input data a compact latent space 

representation of the network traffic features, such as packet sizes, inter-arrival times, and domain 

request frequencies. The latent space representation in the VAE learns the normal patterns of the 

data, whereas during inference its deviations represent a potential anomaly. At its heart, VAE 

consists of a probabilistic generative model. Input data X∈Rn ('n' showing the dimensionality of 

network traffic) feeds into an encoder, which projects the input into a latent space z∈Rd, where 'd' 

denotes the dimensionality of the latent space sets. The encoder outputs two parameters defining a 

Gaussian distribution over latent variables for this process: μ, about the mean, and σ2, the variance 

levels. The parameters defined by the encoder, parameterized by neural network weights ϕ are 

defined via equations 11 & 12, 

𝜇 = 𝑓𝜙(𝑋) … (11) 

𝑙𝑜 𝑔 𝜎2 = 𝑔𝜙(𝑋) … (12) 

Where, fϕand gϕare neural networks outputting the mean and log Variance of the Gaussian 

distribution respectively. Instead of directly sampling from this distribution, the reparameterization 

trick is employed to ensure that the model can be trained via backpropagation. A stochastic noise 

vector \( \epsilon \sim N(0, I) \) is drawn, and the latent variable 'z' is sampled via equation 13, 

𝑧 = 𝜇 + 𝜎 ⋅ 𝜖 … (13) 

This formulation keeps continuous latent variables differentiable for the VAE model, which is 

paramount in training via gradient-based optimization techniques. Once the latent variable 'z' has 

been sampled, a decoder parametrized by weights θ tries to reconstruct the original input 'X' from 

this latent representation. This decoder would give the reconstructed output X′ = hθ(z), where hθ is 

another neural network mapping the latent space back into the input spaces. VAE basically searches 

to minimize reconstruction error between input 'X' and reconstructed output X′ while regularizing 

latent space to follow a standard normal distribution of the process. The total loss function is termed 

the Evidence Lower Bound and is comprised of two parts: reconstruction loss and the Kullback-

Leibler divergence levels. This is defined via equation 14, 

𝐿(𝜙, 𝜃; 𝑋) = 𝐸𝑞𝜙( 𝑧 ∣ 𝑋 )[𝑙𝑜 𝑔 𝑝𝜃( 𝑋 ∣ 𝑧 )] − 𝛽𝐷𝐾𝐿[𝑞𝜙( 𝑧 ∣ 𝑋 ) ∥ 𝑝(𝑧)] … (14) 

Eqϕ(z∣X)[logpθ(X∣z)], The first term here is the reconstruction loss, which pushes the decoder 

towards the proper reconstruction of the input data from the latent space. The quality of 
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reconstruction is measured through mean squared error or cross-entropy loss depending on the nature 

of the input data samples. The second term DKL[qϕ(z∣X)∥p(z)], is essentially the KL divergence, 

indicating the divergence of the learned latent distribution qϕ(z∣X) from the prior distribution p(z), 

which is chosen to be a standard normal N(0,I) in the process. The trade-off between the accuracy of 

reconstruction and the regularization of the latent spaces is controlled through the hyperparameter 

β\\\\betaβ. The reconstruction error plays an important role in anomaly detection. In this setup, 

during training, the VAE learns to minimize the error for normal traffic patterns; it effectively 

compresses data into latent space and then reconstructs it with minimal loss. On the other hand, 

during the inference, if it sees some anomalous traffic data points that differ much from the learned 

normal patterns, then one would expect that the model increases the reconstruction error. This 

deviation serves as an anomaly score for classifying the traffic as normal or anomalous. Formally, 

the reconstruction error for any input instance 'X' is computed via equation 15, 

𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 =∥ 𝑋 − 𝑋’ ∥2 … (15) 

Now, in order to classify the reconstruction error for a given input instance as normal or anomalous, 

a threshold τ is used. If the reconstruction error is higher than τ, then this input is flagged as 

anomalous, which may signal malicious traffic. VAE has been chosen to carry out anomaly detection 

because it can learn a probabilistic representation of a normal traffic pattern without labeled data 

samples. In particular, when dealing with such encrypted traffic, as in the case of DoH, labeled data 

are often impossible or expensive to obtain in cybersecurity contexts. Unsupervised learning 

frameworks, such as those of VAEs, model normal behavior of network traffic in a latent space. 

Thereby, unseen, zero-day attacks can be identified; since any significant deviation from the learned 

distribution is automatically flagged as an anomaly. The probabilistic nature of VAE further provides 

a principled way to quantify uncertainty in its reconstructions, further enhancing real-world 

performance robustness. Ultimately, the overall effectiveness of such a system hinges on the 

effective integration of the VAE into other components that comprise the detection system, which 

includes multiple modal data fusion and reinforcement learning-based feature selection. This also 

benefits the VAE, as only the most informative features pass through to the model from 

reinforcement learning by optimization and fusion. This reduces not only the dimensions within the 

input space but also makes the VAE focus on the capture of the most critical patterns in data 

samples. Besides, VAE complements the data-fused multiple head attention mechanism to detect 

subtle anomalies that might go under the radar of traditional models by operating on fused latent 

representation. Consequentially, both techniques, as stated before, create a thorough detection 

pipeline capable of both known and unknown threats in the dynamic network environment. 
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              Figure 1. Overall Flow of the MMDF-RL Process 

Finally, there is SHAP-named so because it is an abbreviation for SHapley Additive exPlanations-

which is, up to now, the most sophisticated implementation of explainable AI based on the theory of 

cooperative games. It gives a strong framework toward understanding how features contribute to a 
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model's decisions. In cybersecurity applications, such as malicious traffic detection-for example, 

DoH pattern detection-SHAP is particularly effective because it assigns SHAP values to each feature 

in providing explanations at per instance. These SHAP values are actually the contribution of each 

feature toward the model's overall prediction, offering a white-box explanation for complex deep 

learning models in various situations. In other words, SHAP takes the prediction of a model as a 

game amongst the different features. The output, say the probability of the traffic to be malicious in 

this case, is taken as the value of the game. Based on what would be accomplished if added to 

different subsets of the remaining features, SHAP estimates marginal contribution of every feature. It 

contemplates all sets of features that are possible and then computes changes in the model's 

prediction when adding or not adding into each set the feature in consideration. This is followed by 

an average of the marginal contribution of a feature over all sets of features that are possible, 

yielding the Shaply value for a feature. The SHAP value for a feature xi in an instance 'X' can be 

mathematically computed via equation 16, 

𝜙𝑖(𝑓, 𝑥) = ∑
𝑆! (𝑁 − 𝑆 − 1)!

𝑁! 
(𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆))

𝑆⊆𝑁∖{𝑖}

… (16) 

Here, 'N' is the set of all features, S⊆N∖{i} is any subset of features excluding xi and f(S) is the 

model's prediction when only the features in the subset 'S' are considered in the process. This 

therefore gives the difference in the model's output when the feature xi is added to the subset 'S' in 

the process, f(S∪{i})−f(S). The weighting factor ∣S∣! (∣N∣−∣S∣−1)! ∣N∣! This ensures by the 

properties of Shapley values from cooperative game theory that each subset is weighted fairly 

according to its size. The SHAP value ϕi(f,x) is the contribution of feature xi to the overall prediction 

set f(x).Because SHAP values are calculated for every feature in an instance, the model provides an 

explanation of how each feature contributed to predict malicious or benign traffic. These values are 

additive; the sum of SHAP values over all features gives the difference between the actual prediction 

and the mean prediction over the whole dataset via equation 17, 

𝑓(𝑥) − 𝐸[𝑓(𝑥)] = ∑ 𝜙𝑖(𝑓, 𝑥)

𝑁

𝑖=1

… (17) 

This is the property of additivity that especially renders SHAP so apt for model explainability 

problems, where the final output sums the contributions of various features, as in many machine 

learning models including neural networks and decision trees. The additivity property guarantees the 

sum of SHAP values coherently explains the whole model's prediction for every instance set. SHAP 

values might be represented as summary plots, force plots, or anything else that could visually 

represent the magnitude and direction of each feature's contribution toward a prediction. Positive 

SHAP values would represent that the feature pushed the model towards classifying the instance as 

malicious, and negative SHAP values would indicate that the feature pushed the model toward a 

benign classification. These visualizations are very important to understand some complex models in 

cybersecurity, especially false positive reduction. As an example, SHAP analysis might point out that 

certain feature values create persistent misclassifications and can therefore help in refining the 

decision boundaries of the model. In fact, the choice of SHAP is also well-justified here because of 

its theoretical foundation in cooperative game theory, which guarantees fairness in the distribution of 

feature importance across all possible subsets of features. This is crucial in cybersecurity 

applications, where knowing the exact contribution of each feature, such as packet sizes, inter-arrival 

times, or CPU usage, to the final decision taken will be important to make actionable decisions and 
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thus trust the model's predictions. Another point is that SHAP is model-agnostic-that it can be 

applied to any model, from machine learning and deep learning. That makes this technique very 

versatile in explaining the predictions made from complex models, like neural networks and gradient 

boosted trees. SHAP also complements other components in the detection system, such as fusion 

from multiple modalities and feature selection methods. After selecting the optimum subset from the 

reinforcement learning of fused features and processing through the deep learning model, SHAP 

does a post-hoc interpretability to explain how each one of the selected features contributed to the 

final prediction. This way, cybersecurity analysts will have a clear understanding of the rationale for 

specific classifications rather than just trusting the predictions made by the model over subtle, 

multiple modal patterns in the data samples. SHAP, in practice, reduces the number of false positives 

because it identifies concrete misclassifications caused by some anomalous or border-line feature 

value. For instance, if at all a given feature-say, some seldom-seen packet size distribution or some 

uncanny frequency of domain queries-continues to trigger these false positives, SHAP would 

highlight this behavior for model refinement. Compared to recent experiments, SHAP reduced false 

positives by 15%, which alone represents a significant improvement in several real-world 

applications where reducing the investigation burden of false alarms is crucial for operational 

efficiency. In the following, we discuss the efficiency of the proposed model regarding different 

metrics and compare it with an existing model for different scenarios. 

4.  Result Analysis 

The experimental platform built for this work tests the performance of the integrated model 

incorporating methods of multiple modal data fusion, reinforcement learning-based feature selection, 

unsupervised anomaly detection, and explainable AI.  

The datasets [26] and [27] used in these experiments consist the complete set of network traffic 

records, behavioral analytics, and host-based metrics from publicly available network traffic datasets 

and proprietary datasets provided by its industry partners. Publicly available datasets, including the 

CICIDS 2017 dataset, provided normal and malicious network traffic scenarios. Additional real DoH 

traffic samples were collected from monitored network environments for the purpose of investigating 

encrypted traffic anomaly detection. The feature set fed into the model consisted of network traffic 

parameters: packet sizes, inter-arrival times, query frequencies, and domain request patterns; 

behavioral metrics-including domain query history, frequency of access, and temporal patterns in 

browsing activities. To this were added host-based metrics, including CPU utilization, memory 

usage, and number of active background processes. These featured 50 such features in the feature 

space across these three categories, which should ideally be condensed to about 20 through Proximal 

Policy Optimization while retaining the accuracy of detection. The dataset was split into training and 

validation at 70%, 15%, and 15%, respectively. Unusual traffic was injected into normal traffic flow 

at controlled intervals to test the system's capability in detecting malicious unseen traffic. For the 

experimental evaluation, several existing datasets were used to simulate the benign and malicious 

traffics in the real-world scenario in the proposed integrated model. The CIRA-CIC-DoHBrw-2020 

dataset has been designed for the detection of malicious Domain-over-HTTPS traffic, which is one 

of the major primary datasets used during the experiment. It is a rather complicated dataset with 

diversified DoH query types from both legitimate browsing activities and malware traffic using DoH 

to mask its communications. It contains over 50 million records of features of packet size, query 

name, query type, and inter-arrival times; hence, highly appropriate for training models in encrypted 

communication classification into benign and malicious traffic. The CIRA-CIC-DoHBrw-2020 

dataset was used along with CICIDS 2017. This dataset contains labeled normal and attack traffic to 
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simulate such modern attack vectors as DDoS, SQL Injection, and Infiltration from internal sources 

into the network. The CICIDS 2017 dataset is pretty broad, considering it covers network-level 

information, such as source and destination IPs, port numbers, protocol types, and payload. It is a 

great resource for detecting a wide variety of network intrusions. Together, these data sets allowed a 

wide, strong probing of the model's anomaly detection capability in both encrypted and unencrypted 

traffic environments. 

The model was implemented using the TensorFlow deep learning framework and trained on a server 

with an Intel Xeon processor, 128 GB of RAM, and an NVIDIA V100 GPU. Data fusion was 

configured through the multiple head attention mechanism, which had 8 attention heads and a feature 

embedding size of 64 to obtain complex relationships across many data modalities. Feature selection 

utilized the Proximal Policy Optimization algorithm, initialized with an exploration rate of 0.1 and a 

reward structure highlighting improvements in the F1-score, with weightings of 0.7 toward precision 

and 0.3 toward recall in an attempt to balance false positives with false negatives. This VAE was 

initially developed for unsupervised anomaly detection using a minimum reconstruction error. We 

used the Adam optimizer for training the network at a learning rate of 0.001 and batch size of 128. 

Herein, we limit the latent space dimensionality for VAE to 16. We let the model run for 100 epochs 

and apply early stopping regarding the validation loss. First, post-training SHAP was utilized to 

provide per-instance explanations for each detected anomaly by assigning SHAP values to each 

feature in real-time, hence explaining why certain traffic patterns were classified as malicious.  

Experimental results showed that accuracy improved from 87% to 96%, with a precision equal to 

94% and recall of 92%, hence proving the efficacy of the fused feature selection and anomaly 

detection process in finding malicious DoH traffic. Moreover, the explanations through SHAP 

reduced false positive rate by 15%, hence showing in detail features that were responsible for this 

result. This brings robustness into the whole detection system. Efficiency of the proposed model was 

tested on the datasets of CIRA-CIC-DoHBrw-2020 and CICIDS 2017 to measure the performance of 

the proposed model on malicious DoH traffic detection among other types of cyber threats. As a 

point of comparison for this model, we tested its results against the three existing methods of [5], [8], 

and [14]. These represent multiple approaches in both anomaly detection and feature selection to 

comprehensively test the efficacy of the proposed model in both its accuracy and interpretability. 

The following tables and graphs gives a comparison showing the main key performance metrics that 

include accuracy, precision, recall, F1-score, feature reduction, and computational time. 

Table 1: Impact of Classification Accuracy  

Method CIRA-CIC-DoHBrw-2020 (%) CICIDS 2017 (%) Average Accuracy (%) 

Proposed Model 96.7 97.4 97.05 

Method [5] 91.4 93.2 92.3 

Method [8] 89.5 92.1 90.8 

Method [14] 87.8 89.9 88.85 
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Table 1 presents a comparison between the classification accuracy of the proposed model and those 

from the three base-line methods for both datasets& their samples. Indeed, the proposed model has 

outperformed all competing methods with high margins. Its average classification accuracy was 

97.05%, compared to 92.3%, 90.8%, and 88.85% obtained from methods [5], [8], and [14], 

respectively. Such high accuracy improvements are due to the adoption of multiple modal data 

fusion and feature selection strategies that could help in modeling complex relationships in the data 

more effectively. 

 

 Figure 2. Effect of Accuracy  

Table 2: Impact of Precision and Recall Comparison 

Method Precision (CIRA-CIC-

DoHBrw-2020) 

Recall (CIRA-CIC-

DoHBrw-2020) 

Precision 

(CICIDS 2017) 

Recall 

(CICIDS 

2017) 

Proposed 

Model 

94.3 92.8 95.2 93.7 

Method [5] 89.7 88.1 91.2 89.4 

Method [8] 87.5 86.3 89.7 88.2 

Method 

[14] 

85.9 84.4 87.5 86.1 
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Table 2 compares the precision and recall of the proposed model to those of the baseline methods. 

Precision and recall are important performance indicators in anomaly detection, since they depict the 

performance of a model regarding the reduction of false positives and the capture of actual positives. 

On the CIRA-CIC-DoHBrw-2020 dataset, the proposed model reached 94.3% in precision and 

95.2% on CICIDS 2017, hence proving high ability in the proper identification of malicious traffic. 

For recall, the model again outperformed them with 92.8% and 93.7%. Methods [5], [8], and [14] 

gave the minimum precision and recall scores, hence showing that the proposed model was effective 

in the detection of both known and unseen threats. 
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Table 3: Impact of F1-Score  

Method F1-Score (CIRA-CIC-DoHBrw-

2020) 

F1-Score (CICIDS 

2017) 

Average F1-

Score 

Proposed 

Model 

93.5 94.4 93.95 

Method [5] 88.9 90.3 89.6 

Method [8] 86.9 89.0 87.95 

Method [14] 85.1 86.8 85.95 

Table 3 compares the F1-scores, which give a balance between precision and recall, hence an 

indication of general performance for each model in keeping a low false positive and false negative 

rate. The proposed model recorded an F1-score of 93.5% on the CIRA-CIC-DoHBrw-2020 dataset 

and 94.4% on the CICIDS 2017 dataset; hence, it outperforms the other models in handling real-

world anomalies of traffic. The baseline methods [5], [8], and [14] reported lower F1-scores than this 

work, reinforcing the added value of the integrated approach with data fusion and feature 

optimizations. 

Table 4: Impact of Feature Reduction  

Method Initial No of Features Reduced No of Features Feature Reduction Rate 

(%) 

Proposed Model 50 20 60 

Method [5] 50 30 40 

Method [8] 50 28 44 

Method [14] 50 32 36 

Table 4 presents the feature reduction. It is observed that the proposed model reduced the feature 

space by 60%, with a total of 50 to 20 features. This means a great benefit for the Proximal Policy 

Optimization approach, since the methodology will identify which the relevant features in a selective 

manner without loss in classification performance. On the other hand, by methods [5], [8], and [14], 

the feature space is reduced less; more features are kept, which increases the computational 

complexity and consequently decreases the levels of interpretability in the process. 
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Table 5: Impact of Computational Time 

Method Computational Time (CIRA-

CIC-DoHBrw-2020) 

Computational Time 

(CICIDS 2017) 

Average 

Computational Time 

Proposed 

Model 

7.3s 6.8s 7.05s 

Method [5] 9.2s 8.7s 8.95s 

Method [8] 8.8s 8.3s 8.55s 

Method [14] 9.5s 9.0s 9.25s 

Processed time comparisons of each approach are shown in Table 5. In the case of the proposed 

model, due to the optimal feature selection and effective usage of multi-modal data fusion, 

classifying with the overall average processing time was the shortest, at 7.05 s in general. However, 

methods [5], [8], and [14] are relatively slow and needed an average of about 8.55 to 9.25 s because 

higher feature counts and less optimized models imposed higher processing overheads. 

 

     Figure 3. Effect of  Computational time 
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  Table 6: False Positive Rate Reduction with SHAP 

Method False Positive Rate 

(Before SHAP) 

False Positive Rate 

(After SHAP) 

False Positive 

Reduction (%) 

Proposed 

Model 

12.5 10.6 15 

Method [5] 15.2 14.3 6 

Method [8] 16.8 15.9 5 

Method [14] 17.6 16.8 4 

The proposed model results in a high reduction of 15% in false positives from 12.5% to 10.6% after 

the application of SHAP for the explanation and refinement of the decision boundary. While the 

remaining methods, [5], [8], and [14], showed low false positive reduction rates, further showing that 

SHAP is more capable of improving model interpretability and performance. The iterative practical 

use case will be discussed next for the proposed model, which shall further help readers understand 

the whole process. 

Practical Use Case Scenario Analysis 

Multiple Head Attention Mechanism for Data Fusion was applied to three different types of input 

features, which are: network traffic features, behavioral analytics, and host-based metrics. An 

attention mechanism produces weights that show how much each feature contributes in determining 

the final fused representation. This result is further fed as input for the subsequent steps. Here, the 

scores that are relevant to each head are calculated by the mechanism dot-product attention, where 

the model self-learns to attend more to the informative parts of the data samples. The following 

example shows how different attention heads weigh the different input features. 

               Table 7: Multiple Head Attention Scores for Data Fusion 

Feature Head 1 Weight Head 2 Weight Head 3 Weight Head 4 

Weight 

Packet Size 0.15 0.10 0.08 0.18 

Inter-Arrival Time 0.20 0.25 0.23 0.22 

CPU Usage 0.12 0.08 0.10 0.11 

Memory Usage 0.14 0.12 0.14 0.16 
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Domain Query Frequency 0.18 0.20 0.22 0.19 

Time-of-Day Query 

Patterns 

0.21 0.25 0.23 0.14 

Table 7 provides the details of various attention heads with their assigned weights. These scores 

describe how the multiple head mechanism of attention grants significance to various modalities in 

such a manner that the model will capture the most relevant pattern to detect malicious behavior. For 

instance, as it is in this case, some heads grant higher importance to inter-arrival time and time-of-

day query patterns and less importance to packet size and memory usage. PPO was used to select the 

most informative subset of features from the initial pool of 50 features. This will involve iteratively 

adjusting the selection of features based on a certain reward signal, which reflects the model's current 

performance in detecting malicious traffic. In a number of iterations, PPO converged into this final 

set of 20 features that selects features in such a way that maximizes accuracy in detection and 

minimizes false alarms. 

Table 8: Selected Features After PPO-Based Fused Feature Selection 

Feature Selected (1) / Not Selected (0) 

Packet Size 1 

Inter-Arrival Time 1 

CPU Usage 0 

Memory Usage 1 

Domain Query Frequency 1 

Time-of-Day Query Patterns 1 

Background Processes 0 

Query Response Time 0 

Active TCP Connections 1 

DNS Query Type 1 

Table 8 provides the final subset of features selected by PPO: packet size, inter-arrival time, and 

domain query frequency are regarded as important indicators; background processes and response 
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time are not selected, since they have little influence on performance. Then, VAE learns a compact 

latent representation of normal traffic patterns to develop anomaly detection. It calculates the 

reconstruction error of each input instance, which serves as a threshold value to identify whether the 

traffic flow is normal or anomalous. Those instances with high reconstruction errors are labeled as 

suspected anomalies, which raise malicious traffic. 

Table 9: Reconstruction Errors and Anomaly Detection 

Instance ID Reconstruction Error Anomalous (Yes/No) 

1 0.023 No 

2 0.045 Yes 

3 0.019 No 

4 0.060 Yes 

5 0.015 No 

6 0.052 Yes 

Reconstruction errors at different instances of traffic are shown in Table 9. In this case, those 

instances whose values of error exceed the threshold, such as 0.04, are classified as anomalous and 

thus potentially malicious. For instance, Example 2 and Example 4 have a high reconstruction error 

and were thus picked out as anomalies. At the post-anomaly detection stage, SHAP values have been 

calculated in order to explain model predictions by attributing the contributions of individual features 

to the classification of an instance as malicious or benign during the process. From the SHAP values, 

insight is shed into which features contributed most significantly to the final predictions. 

Table 10: SHAP Values for Anomalous Instances 

Feature SHAP Value (Instance 2) SHAP Value (Instance 4) 

Packet Size 0.15 0.12 

Inter-Arrival Time 0.23 0.20 

Memory Usage 0.08 0.10 

Domain Query Frequency 0.18 0.25 

Time-of-Day Query Patterns 0.16 0.22 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 53, Issue 11, November : 2024 
 

UGC CARE Group-1                                                                                                          254 

 

 

Table 10 provides SHAP values for two anomalous instances. The SHAP value represents the 

amount of the feature that contributed to the final classification. For Instance 2, the top two features 

with large SHAP values are inter-arrival time and domain query frequency, which means the two 

features are very influential to flag the traffic as malicious. In the case of Instance 4, the features 

most responsible for the model's decision involved the patterns of time-of-day queries and domain 

query frequency. The system final outputs classify traffic as malicious or benign by embedding all 

the prior steps. Based on the multihead attention mechanism, PPO-based feature selection, VAE for 

anomaly detection, and SHAP-based explanation, it gives a crystal clear interpretable decision. 

Table 11: Final Output Classification for Traffic Instances 

Instance ID Classification SHAP Explanation Provided (Yes/No) 

1 Benign Yes 

2 Malicious Yes 

3 Benign Yes 

4 Malicious Yes 

5 Benign Yes 

6 Malicious Yes 

Table 11 presents the final classification of all sets of instances in traffic. Instances 2, 4, and 6 were 

classified as malicious by the model; the SHAP explanation for every decision added more to the 

transparency and interpretability features that are used by the model. These provide insight into the 

reasons behind each classification, upon which the cybersecurity analyst has to take further action in 

accordance with the derived insights in the process. 

5. Conclusion and Future Scope 

The proposed integrated model incorporated the merits of multi-modal data fusion, reinforcement 

learning-based feature selection, VAE for unsupervised anomaly detection, and eXplainable AI 

techniques that significantly improved the benchmark for malicious DoH traffic and other cyber 

threat detection. The model has fused the network traffic, behavioral analytics, and host-based 

features into a robust feature representation using the multiple head attention mechanism that 

elevated the overall detection performance. The model leveraged the PPO to optimize this feature 

space, hence reducing dimensionality from 50 to 20 informative features, while further enhancing 

computational efficiency and model interpretability with no compromise on performance. The end 

result of the model was an average classification accuracy of 97.05%, which had a great 

improvement on the results of the baseline methods [5], [8], and [14] with accuracies of 92.3%, 

90.8%, and 88.85%, respectively. It achieved values of 94.3% for precision and 92.8% for recall on 

the CIRA-CIC-DoHBrw-2020 dataset, and 95.2% and 93.7%, respectively, on the CICIDS 2017 

dataset. This really proves the efficacy of this model in the identification of malicious traffic with 
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reduced false positives and false negatives. The average F1-score turned out to be 93.95%, 

outperforming all the other methods mentioned with a better balance in detection. By integrating 

SHAP into the model, it improved the interpretability by providing a detailed explanation of 

misclassifications that reduced false positives by 15%. Based on these results, it is justified that the 

proposed model has effectively solved the anomaly detection problem of network traffic and, in 

particular, in encrypted traffic environments such as DoH, with high accuracy, reduced 

computational complexity, and improved transparency. 

As a future dimension of this work, this model can be implemented on big data applications where 

data is generated from sensing IOT devices, 5G, wireless networks and edge computing 

environments. For the extension of this research other Explainable AI approaches like LIME etc can 

be applied instead of SHAP. This model can be further extended with the functionality of multi-stage 

anomaly detection, where different kinds of traffic are analyzed at several layers, including network 

and application. By addressing such aspects, future versions of the model can be even more powerful 

and agile in real-time complex cybersecurity environments. 
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