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Abstract 

Emotion recognition holds significant potential in human-computer interaction, affective computing, 

and various psychological studies. This research delves into advancing the accuracy of emotion 

recognition through the integration of Deep Local Texture Patterns (DLTP) feature points with a 

comprehensive set of 68 features, employing an array of diverse machine learning algorithms. The 

primary objective is to investigate the effectiveness of combining DLTP features with extensive feature 

representation, and subsequently, determine the most suitable machine learning algorithms for 

achieving heightened emotion recognition accuracy. The proposed methodology involves the 

extraction of DLTP feature points, complemented by 68 distinct features encompassing geometric, 

statistical, and texture-based attributes for high accuracy with less complex time. This combined 

feature set captures both local and holistic information present within the emotion-related facial 

expressions. 
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I. Introduction 

Object recognition pertains to computer vision and image processing, encompassing the detection and 

classification of various entities like humans, buildings, and vehicles within digital images and video 

sequences. A notable facet is face recognition, which operates in verification and identification modes 

[1]. This paper's focus is on the identification mode, particularly in recognizing faces. Due to its 

multidimensional nature, face recognition requires robust computational analysis. The core challenge 

is accurately determining an individual's identity and making decisions based on this recognition 

outcome. While primarily crucial for security, it can also grant swift access to medical, criminal, or 

other records. This problem's solution bears significance, enabling preventive actions, improved 

service, secure access, and more.Face identification involves identifying a person in images or videos 

and validating their identity. It entails matching a query face against template images in a face database 

to ascertain the query's identity. This mode yields both positive and negative recognitions, with 

computational complexity escalating for larger template databases [2,3]. Our objective is identifying 

the person within the gallery corresponding to the query face. Upon submitting a query image, the 

normal map undergoes compression to compute feature indexes. These indexes narrow down the 

search to similar normal map clusters via a k-d-tree traversal [4].Over the years, academia and industry 

have developed diverse research and practical solutions to address face recognition challenges, 

particularly in pattern recognition and computer vision [5]. Facial recognition is intricate due to the 

susceptibility of facial morphology to factors like pose, lighting, and expression [3]. Faces share 

common components (eyes, nose, lips), necessitating efficient algorithms for similarity representation 

and distinct classification of diverse subjects. Local Binary Patterns (LBP) and k-Nearest Neighbor 

(K-NN) are notable solutions, initially used for texture classification but now tackling face recognition 

issues. LBP offers robustness and computational efficiency for real-time analysis [6]. K-NN excels in 

image classification due to its interpretability and low computation time [7,8]. Here, LBP and K-NN 

aim to extract and classify features from LBP histograms to enhance feature matching and 

identification rates.However, facial features might change during speech or partial occlusion. 

Rosenblum et al. [9] employ network techniques, dividing facial expression recognition (FE) 

complexity into three decomposition layers. In [10], occlusion-resistant FER is explored via localized 
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FE feature representation and classifier output fusion. Abboud and Davoine [11] propose a bilinear 

factorization expression classifier for facial recognition. Detecting and recognizing facial expressions 

play a pivotal role in nonverbal communication, with facial expressions carrying more message content 

than verbal language [12]. Recently, Support Vector Machines (SVM) have emerged within the 

framework of statistical learning theory [13],[14]. They have exhibited notable success across diverse 

applications, spanning from forecasting time series to facial recognition [15], and even processing 

biological data for medical diagnosis. This blend of theoretical underpinnings and practical 

achievements has kindled interest in exploring SVM's attributes and expanding its applications. This 

document provides a concise primer on SVM's theory and implementation, accompanied by a 

discussion of the five papers featured in the workshop. Initially conceptualized as a means to 

amalgamate multiple CART-style decision trees using bagging [18], random forests [16] have 

undergone development. Their inception was influenced by the random subspace method introduced 

in [19] and [20]'s work on feature selection. Core concepts underpinning random forests can also be 

traced back to early endeavors in assembling decision tree ensembles.  

 

II. Methodology 
Facial Expression Recognition (FER) stands as a pivotal pursuit in the realm of computer vision, 

garnering significant attention in recent times. The FER process typically encompasses several stages: 

face detection, facial alignment, feature extraction, and classification. Within this discourse, we delve 

into the core methodologies and techniques frequently employed for each of these phases. In the 

context of face detection and alignment, this article presents an exploration of prominent algorithms, 

notably Viola-Jones and Active Appearance Models. We delve into the merits and shortcomings 

inherent in each. Regarding feature extraction, we shed light on widely used approaches like Local 

Binary Patterns (LBP) and Gabor wavelets, elucidating their significance. Turning to the classification 

aspect, we furnish an overview of diverse techniques tailored for FER. These include Support Vector 

Machines (SVMs), Convolutional Neural Networks (CNNs), and Recurrent Neural Networks (RNNs). 

We delve into the essence of each approach, highlighting their contributions and applicability. 

Moreover, we acknowledge the hurdles and restrictions that accompany each stage of FER. These 

challenges are outlined in tandem with potential avenues for overcoming them. The article concludes 

by casting a spotlight on the emergent domains for further FER research, charting the course for 

advancements in this field. 

 
Fig1: Methodology for predicting expression 

The insights presented within this article serve as a compass for steering the advancement of more 

precise and efficient Facial Expression Recognition (FER) systems, adaptable to an array of real-world 

contexts. The progression through the following steps facilitates this development: 

1. Face Detection: Locate and pinpoint faces within images or video frames. 

2. Pre-processing: Enhance input image or video quality, encompassing noise reduction, histogram 

equalization, and face alignment. 

3. Feature Extraction: Extract pertinent features from pre-processed images or video frames, such as 

Local Binary Patterns (LBP), Histograms of Oriented Gradient (HOG), and deep features from 

Convolutional Neural Networks (CNNs). 

4. Expression Classification: Utilize the extracted features to categorize facial expressions into 

predefined emotional states, e.g., happy, sad, angry, neutral. 

5. Evaluation: Gauge the FER system's efficacy through metrics like accuracy, precision, recall, and 

F1 score. 
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The specifics of FER steps and techniques can vary contingent upon the distinct task, dataset, and 

model architecture in play. 

2.1 Face Detection   

Face detection assumes paramount importance within FER. It precisely identifies and isolates faces 

from backgrounds, paving the way for subsequent analysis. A plethora of methods, both traditional 

and deep learning-based, exists for face detection. Noteworthy techniques include the Viola-Jones 

algorithm, Histogram of Oriented Gradients (HOG) method, Single Shot Multibox Detector (SSD), 

and You Only Look Once (YOLO) algorithm. Subsequently, processed faces yield data for further 

analysis, encompassing Convolutional Neural Networks (CNNs) and Facial Landmark Detection 

(FLD) for feature extraction. 

2.2 Pre-processing 

Pre-processing enhances the integrity of input imagery in FER, facilitating information extraction and 

enhancing expression recognition precision. It entails: 

1. Face detection. 

2. Face alignment to a standardized orientation. 

3. Image enhancement to remove noise and improve contrast. 

4. Image normalization to ensure standardized intensity values. 

These measures mitigate input variability and enhance the FER system's accuracy. 

2.3 Feature Extraction 

Feature extraction, a pivotal FER step, selects and distils relevant data from pre-processed images. 

Approaches encompass: 

1. Geometric features, including facial landmarks and ratios. 

2. Texture features like Local Binary Patterns (LBP) and Histograms of Oriented Gradient (HOG). 

3. Deep features from CNNs trained on comprehensive datasets. 

Method selection hinges on task specifics, with deep features excelling in complex scenarios and 

geometric/texture features offering computational efficiency. 

2.4 Expression Classification 

Expression classification, the ultimate FER step, assigns labels to images based on facial expressions. 

It incorporates techniques like statistical classifiers (SVM, Naive Bayes), neural networks (CNNs, 

RNNs), and ensemble methods. Contextual factors influence method choice, with neural networks 

thriving on complex data and statistical classifiers excelling in efficiency. 

2.5 Evaluation 

FER evaluation gauges system performance through metrics like accuracy, precision, recall, F1 score, 

confusion matrix, ROC curve, and AUC. Comprehensive evaluation compares against existing 

systems and embraces diverse datasets. 

 

III. Existing Local Binary Patterns for Feature Extractions  

Incorporating multiple LBP variants bolsters texture analysis, particularly for emotion recognition. 

These LBP variants include the original, Uniform, Circular, Rotation-Invariant, Extended, Completed, 

and Improved LBP. Each variant possesses distinctive characteristics, contributing to nuanced texture 

pattern recognition. Implementation involves applying LBP variants to specific facial regions, 

followed by classification using SVMs, Random Forests, or deep learning models. Performance 

comparison of these variants on benchmark datasets showcases their efficacy in emotion feature 

extraction. The choice of variant depends on dataset attributes and emotion recognition task nuances. 

3.1 Original LBP 

The initial LBP operator was presented by Ojala et al. [21]. This operator operates on the eight 

neighbouring pixels of a central pixel, utilizing the central pixel's intensity as a threshold. If a 

neighbouring pixel possesses a higher or equal gray value compared to the central pixel, it receives a 

value of one; otherwise, it's assigned zero. This procedure generates the LBP code for the central pixel, 

formed by concatenating the resulting eight binary values (as illustrated in figure 2). 
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Figure 2: The Original LBP Operator 

Subsequently, the LBP operator was expanded to incorporate neighbourhoods of varying dimensions. 

Here, a circular region with a radius of R is defined around the central pixel. P sampling points, evenly 

spaced along this circular edge, are assessed in comparison with the central pixel's value. To acquire 

the sampling point values across the neighbourhood for any radius and sampling point count, (bilinear) 

interpolation becomes essential. The notation (P, R) is employed to denote these neighbourhoods. In 

Figure 1.4, different (P, R) configurations are depicted to illustrate three distinct sets of neighboring 

points. 

 
Figure 3: Circularly neighbor-sets for three different values of P and R 

 

 

 

        
Fig4: Basic LBP image 

If the coordinates of the center pixel are (xc, yc) then the coordinates of his P neighbours (xp, yp) on 

the edge of the circle with radius R can be calculated with the sinus and cosines: 

xp = xc + Rcos(2𝜋𝜋p/P ) (1) 

yp = yc + Rsin(2𝜋𝜋p/P ) (2) 

If the gray value of the center pixel is gc and the Gray values of his neighbours are gp, with p = 0, ..., 

P − 

1, than the texture T in the local neighbourhood of pixel (xc, yc) can be defined as: 

  
Upon attaining these point values, an alternative method of characterizing texture emerges. This 

involves subtracting the central pixel's value from the values of the points situated on the circular 

periphery. This approach effectively encapsulates local texture through a combined distribution of the 

central pixel's value and the resulting differences: 

 (4) 

Since t(gc) describes the overall luminance of an image, which is unrelated to the local image texture, 

it does not provide useful information for texture analysis. Therefore, much of the information about 

the textural characteristics in the original joint distribution (Eq. 3) is preserved in the joint difference 

distribution. 

 (5) 

LBP 
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While immune to grayscale shifts, the differences are susceptible to scaling. To ensure invariance 

against any monotonous transformation of the grayscale, only the sign of the differences is taken into 

account. Consequently, when a point on the circular periphery holds a Gray value higher than or equal 

to the centre pixel, it's assigned one; otherwise, it's assigned zero: 

 (6) 

Where 

 
 In the last step to produce the LBP for pixel (xc, yc) a binomial weight 2p is assigned to each sign 

s(gp − gc). These binomial weights are summed: 

 (7) 

The Local Binary Pattern characterizes the local image texture around (xc, yc). The original LBP 

operator 

in figure 1 is very similar to this operator with P = 8 and R = 1, thus LBP8,1. The main difference 

between these operators is that in LBP8,1 the pixels first need to be interpolated to get the values of 

the points on the circle. 

3.2 Uniform LBP 
A Local Binary Pattern earns the label of "uniform" if it encompasses a maximum of two bit-level 

shifts between 0 and 1, or vice versa. To clarify, this signifies that a uniform pattern either experiences 

no transitions or exactly two transitions. The scenario of a solitary transition is excluded since the 

binary sequence is regarded as circular. Noteworthy examples include the zero-transition patterns (e.g., 

00000000 and 11111111) and uniform patterns with eight bits and two transitions, such as 00011100 

and 11100001. With patterns involving two transitions, there are P (P − 1) potential combinations. For 

uniform patterns with P sampling points and radius R the notion 𝐿BPu2
𝑃, is used. 

 

 
Fig5: Different texture primitives detected by the 

 

 

        

 
Fig6.  Uniform LBP image 

𝐿BPu2
𝑃, using only uniform Local Binary Patterns has two important benefits. The first one is that it 

saves memory. With non-uniform patterns there are 2P possible combinations. With 𝐿BPu2
𝑃, there are 

P (P − 1) + 2 patterns possible. The number of possible patterns for a neighbourhood of 16 

(interpolated) pixels is 65536 for standard LBP and 242 for LBPu2. The second benefit is that LBPu2 

detects only the important local textures, like spots, line ends, edges and corners. See figure 6 for 

examples of these texture primitives. 

3.3 Circular LBP  

A circular neighbourhood is delineated through a collection of sampling points, uniformly distributed 

along a circle centred on the target pixel for labelling. Dictated by variables and respectively, the 

circular local neighbourhood’s configuration is determined by the count of sampling points and the 

ULBP 
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circle's radius. Moreover, to accommodate sampling points not precisely coinciding with pixel canters, 

bilinear interpolation is employed. A depiction of the circular LBP operator is provided in Figure 7. 

 

 

            

Fig7: Circular LBP image 

Moreover, the theory of circular LBP operator is formally defined as follows: Given a pixel at location 

 xc , yc ) and its circular neighbourhood P R,  , sampling points locations xk ,yk ) are computed as 

(𝑥𝑘, 𝑦𝑘) = (𝑥𝑐 + 𝑅𝑐𝑜𝑠 (
2𝜋k

𝑃
) , 𝑦𝑐 − 𝑅𝑠𝑖𝑛 (

2𝜋k

𝑃
))    (1) 

And the intensity values at these sampling points denoted by 𝑣𝑝 = I(𝑥𝑘, 𝑦𝑘) with k € { 0,1,…P-1}.  

The basic LBP code is then expressed in the decimal format as: 

𝐿𝐵𝑃𝑃,𝑅(𝑥𝑘, 𝑦𝑘) = ∑ 𝑆(𝑣𝑘 + 𝑣𝑐)2𝑘𝑃−1

𝑘=0
   , 

Where 𝑣𝑘  𝑎𝑛𝑑 𝑣𝑐 are respectively intensity values of the center pixel and the 𝑘𝑡ℎ neighborhood pixels 

in the circular neighborhood (P,R), and the thresholding function S(u) is defined as : 

𝑆(𝑢) = {
1, 𝑢 ≥ 0
0, 𝑢 < 0

               (3) 

The above definitions express the properties of the LBP operator which are its resistance to 

illumination changes and its simplicity in computation. For P sampling points, 2 n LBP codes ranging 

between 0 and       2 p-1 can be derived to form a LBP feature vector. This technique suffers from the 

curse of dimensionality. For example if one uses a circular (8,1) neighbourhood to describe an image 

divided into 64 blocks, then the resulting LBP8,1-feature vector is of high dimension which is equal to 

16,384. So high dimensionality of feature descriptors implies high discriminability but low 

classification effectiveness both at the training and testing stages. Therefore, a high discriminative 

feature descriptor with low feature dimension is required [22]. 

3.4 Rotation-Invariant LBP (RI-LBP) 

The essence of the rotation-invariant LBP operator involves employing the standard LBP operator to 

generate a circular binary code. This code is then consistently rotated, yielding a sequence of LBP 

values. Throughout the rotation, the previous factor p2 in each code remains constant, and the smallest 

value after rotation is adopted as the ultimate LBP value. Concurrently, to address the challenge posed 

by an excess of binary modes, the LBP operator equivalent to the mode is employed to diminish the 

dimensionality of the rotation-invariant LBP operator's mode types. This process is formulated as 

(1):𝐿𝐵𝑃𝑃,𝑅
𝑛 = min(𝑅𝑂𝑅(𝐿𝐵𝑃𝑃,𝑅

𝑛 𝑖)|𝑖 = 01,2 … 𝑃 − 1)   (1) 

Where, ROR(x,i) is the rotation function, I is the number of bits of cycle shift(i<p), 𝐿𝐵𝑃𝑃,𝑅
𝑛  is the 

rotation invariant LBP  operator, and 𝐿𝐵𝑃𝑃,𝑅
𝑛  is combined with the equivalent mode to obtain the 

equivalent mode of rotation invariant as shown in the below formula 

𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖𝑢2 = {

∑ 𝑠(𝑔𝑝 − 𝑔𝑐 𝑖𝑓 𝑈(𝐿(𝑃, 𝑅)) ≤ 2𝑃−1
𝑝=0

𝑝 + 1      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                              
}         (2) 

Where, U(L(P,R) is the number of changes from 0 to 1 or from 1 to 0 fig () is the facial expression 

feature graph extracted by rotation invariant LBP operator [23] . 

CrLBP 
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Fig8: ROR LBP image 

3.6 Extended LBP (ELBP) 

ELBP enhances the original LBP by considering additional information such as spatial relationships 

between pixels. It incorporates the radius and angular differences between neighbouring pixels, result 

[24]. 

 

 

       
Fig 9: Elbp image 

3.6.1 Radial Difference Local Binary Pattern (RDLBP) 

LBP computation involves comparing the values of neighbouring pixels on a circular path with the 

central pixel value. This process solely encodes the connection between the central pixel and 

neighbouring pixels situated on the same ring (within a single scale), overlooking the second-order 

associations across varying rings (scales). For each image pixel, examination is extended to two rings: 

one with a radius of r and the other with a radius of r - δ, both centred at pixel xc. Additionally, p pixels 

are uniformly distributed along each ring. To produce the RDLBP codes, we first compute the radial 

differences {xr,p,n − xr−δ,p,n} n between pixels on the two rings and then threshold them against 0. The 

formal definition of the RDLBP code is as follows: 

𝑅𝐷𝐿𝐴𝑟,𝑝,𝑞 (𝑥𝑐) = ∑ 𝑆(𝑃𝑟,𝑝,𝑛 − 𝑃𝑟−𝛿 ,𝑝,𝑛)2𝑘

𝑝−1

𝑛=0

 

3.6.2 Angular Difference Local Binary Pattern (ADLBP)  

LBP's inadequacy in capturing second-order relationships among ring pixels is evident. Consequently, 

ADLBP addresses this limitation by incorporating angular comparisons (such as clockwise direction) 

between neighbouring pixels, excluding the central one. Mathematically, the computation of ADLBP 

can be expressed as follows: 

𝐴𝐷𝐿𝐴𝑟,𝑝,𝑞 (𝑥𝑐) = ∑ 𝑆(𝑃𝑟,𝑝,𝑛+1 − 𝑃𝑟 ,𝑝,𝑛)2𝑘

𝑝−1

𝑛=0

 

Compact and informative, RDLBP and ADLBP exhibit grayscale invariance and computational 

efficiency. Furthermore, they lend themselves to extensions that confer rotation invariance, uniformity, 

and even a 3D expansion of the LBP concept. 

3.7 Completed LBP (CLBP) 

The Completed Local Binary Pattern (CLBP) operator embodies a method for characterizing local 

regions. It encompasses the local contrast represented by the central Gray level and the Local 

Difference Sign Magnitude Transform (LDSMT). LDSMT is further decomposed into its sign and 

magnitude constituents. The Completed LBP encapsulates three distinct operators: CLBP_C, 

CLBP_S, and CLBP_M. CLBP_C encodes the central Gray level following global thresholding. 

CLBP_S and CLBP_M are responsible for coding the sign and magnitude components, respectively. 

ELBP 



[ 

 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 52, Issue 11, No. 1, November : 2023 
[ 

 

UGC CARE Group-1,                                                                                                                 148 

Subsequently, these three code maps are amalgamated to generate the CLBP feature map, which is 

then employed to create the CLBP histogram.[25] 

The CLBP_S operator can be given by  

𝐶𝐿𝐵𝑃𝑆𝑃,𝑅
= ∑ (𝑔𝑝 − 𝑔𝑐)2𝑝𝑃−1

𝑃−0
      (1) 

Where (𝑥) = {
1, 𝑥 ≥ 0
0, 𝑥 < 0

 , and the 𝑔𝑐 is the gray value of the center pixel, 𝑔𝑝 is the value of its neighbors, 

P is the number of involved neighbors. 

The CLBP_M operator can be defined by  

𝐶𝐿𝐵𝑃𝑀𝑃,𝑅
= ∑ 𝑡(𝑚𝑝, 𝑐)2𝑝𝑃−1

𝑃=0
  (2) 

Where 𝑡(𝑥, 𝑐) = {
1, 𝑥 ≥ 0
0, 𝑥 < 0

  and c is the threshold value, here it is set  𝑚𝑝 which is the mean value for 

the whole image. The CLBP_C can be defined by  

𝐶𝐿𝐵𝑃𝐶𝑃,𝑅
= 𝑡(𝑔𝑐, 𝐶1)   (3) 

These various adaptations of Local Binary Patterns provide distinct avenues for capturing texture 

details within images. The selection of a particular variant hinges on the unique attributes of the image 

data and the demands of the intended application. Often, experimentation and assessment using 

specific datasets are essential to ascertain the optimal Local Binary Pattern variant for a particular task. 

 

iv. Proposed Methodology 

The proposed Facial Expression Recognition (FER) pipeline's schematic is illustrated in Figure 10. 

The pipeline comprises six integral components: face detection & landmark localization, face 

alignment & registration, image enhancement, feature extraction, dimensionality reduction, and 

classification. When fed an input image, the face detection & landmark localization module identifies 

potential faces and their corresponding facial landmarks. In the subsequent phase, the face alignment 

& registration unit aligns and rescales facial images to a standardized resolution. Following this, image 

enhancement techniques are applied. Features are then extracted from these improved images utilizing 

the DLTP descriptor. Subsequently, the high-dimensional features are processed through 68 feature 

points, employed to extract features pertinent to Facial Expression Recognition (FER). These 68 

feature points employ texture analysis to quantify spatial relationships amid pixel intensities in an 

image. Lastly, the reduced facial features undergo classification, with Machine Learning classifiers 

assigning expression labels. The subsequent section delves into comprehensive insights into each unit 

constituting the pipeline. 

 
Fig10: Pipeline for the proposed facial smile emotions recognition system 

Determining the pre-processing techniques to employ for Facial Expression Recognition (FER) hinges 

on a range of considerations, encompassing dataset attributes, the particular FER objective, and the 

computational resources at hand. 

4.1 DLTP Feature Extraction 
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 Facial feature extraction in the designed FER pipeline involves the application of the Dynamic Local 

Ternary Pattern (DLTP) descriptor. Unlike the commonly used LTP descriptor, the DLTP descriptor 

employs an automated process to establish the threshold τ, drawing from Weber’s law. Moreover, this 

descriptor adaptively adjusts the threshold according to pixel intensity values. Weber’s law dictates 

that the alteration in a stimulus (such as lighting or sound) required for the change to be perceptible 

maintains a constant ratio with the initial signal. The variant of Weber’s law integrated into DLTP is 

presented as (1). 
Δ𝐼

𝐼
=  𝜏             (1) 

In equation (4), the term 1I represents the alteration in intensity I, while τ represents the consistent 

proportion. Within the context of DLTP, the term 1I becomes generalized as |In − Ic|, with I designated 

as Ic and In (where n = 1, 2... 8) representing neighbouring pixels. As a result, the formulation of 

Weber's law employed to autonomously ascertain the threshold can be mathematically articulated, as 

demonstrated in equation (5). 
𝐼𝑛−𝐼𝑐

𝐼𝑐
= 𝜏                     (2) 

Figure 8 illustrates the pattern encoding procedure utilizing the DLTP descriptor. An automatically 

determined threshold τ (using equation (2)) is applied around the center pixel value Ic of the 3 × 3 

neighbouring pixels In (where n = 1, 2... 8), as depicted in Figure 9(b). Neighbouring pixels that fall 

within the range of Ic + τ and Ic - τ are quantized to 0, while those below Ic - τ are quantized to -1, and 

those above Ic + τ are quantized to 1, in line with equation (3). In this equation, SDLTP represents the 

quantized value of the neighbouring surroundings, as illustrated in Figure 3. Similarly, to LTP, the 

produced quantized value in DLTP is also segregated into negative patterns and positive patterns. The 

ensuing negative and positive binary patterns are then multiplied by predetermined weights and 

summed to yield the DLTP encoded lower and upper decimal values. Subsequently, the mean value of 

the lower and upper encoded values is calculated. The mathematical expressions employed to 

transform the upper and lower DLTP coded values into positive (upper) and negative (lower) decimal 

values are presented in equations (4) and (5), respectively. 

 
Fig 11: Systematic Representation of feature extraction scheme using DLTP descriptor 

𝑆𝐷𝐿𝑇𝑃(𝐼𝑐, 𝐼𝑛) = {

−1, 𝑖𝑓 𝐼𝑛 < 𝐼𝑐 − 𝜏
0,   𝑖𝑓 𝐼𝑐 − 𝜏 ≤ 𝐼𝑛 ≤ 𝐼𝑐 + 𝜏

+1 𝑖𝑓 𝐼𝑛 > 𝐼𝑐 + 𝜏
}              (3) 

𝑃𝐷𝐿𝑇𝑃 = ∑ (𝑆𝑝(𝑆𝐷𝐿𝑇𝑃(𝑖))𝑋2𝑖7
𝑖=0                                               (4) 

Here 

                                         𝑆𝑝(𝑣) = {
1 𝑖𝑓 𝑣 > 𝑢
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 
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𝑁𝐷𝐿𝑇𝑃 = ∑ 𝑆𝑁(𝑆𝐷𝐿𝑇𝑃(𝑖))𝑋2𝑖7
𝑖=0                                               (5) 

here 

𝑆𝑁(𝑣) = {
1 𝑖𝑓 𝑣 < 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

Figure 8 delineates the process employed to capture textural details from a given facial image utilizing 

the DLTP descriptor. Starting with an input facial image, the procedure entails extracting the DLTP 

encoded positive (PDLTP) and negative (NDLTP) images by following the outlined sequence of steps. 

Subsequently, the feature extraction process segments these images into several m × n regions. 

Following this, local facial features are consolidated through histogram computations for each of these 

segments. Eventually, the DLTP-extracted positive and negative mean values are merged, resulting in 

the culmination of a high-dimensional facial feature. 

𝐻𝐷𝐿𝑇𝑃(𝜏) = ∑ ∑ (𝑃𝐷𝐿𝑇𝑃(𝑟, 𝑐), 𝜏)𝑛
𝑐=1

𝑚
𝑟=1       (6) 

𝐻𝐷𝐿𝑇𝑃(𝜏) = ∑ ∑ (𝑁𝐷𝐿𝑇𝑃(𝑟, 𝑐), 𝜏)𝑛
𝑐=1

𝑚
𝑟=1      (7) 

Where 

𝑓(𝑎, 𝜏) = {
1, 𝑖𝑓 𝑎 = 𝜏
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

Equations (6) and (7) involve the parameters m and n, signifying the width and height of the encoded 

facial image region using DLTP and uDLTP, respectively. The value of τ spans from 0 to 58 for uDLTP 

and from 0 to 255 for DLTP. Extracted facial features via DLTP yield high-dimensional outcomes, 

with a considerable portion of these features proving redundant. Such elevated dimensionality impedes 

classifier performance and escalates computational requirements. Consequently, this study has 

employed Principal Component Analysis (PCA) for dimensionality reduction, effectively curtailing 

feature dimensions. Upon a closer examination of the scatter plot, the characteristics of the DLTP 

features become evident. 

4.2 Face points recollection  

By employing the code developed by Adrian Rosebrock, the detection of 68 facial landmarks along 

with their corresponding X and Y coordinates can be accomplished. A demonstration of these points 

is illustrated in below Figure 12. 

.  

Figure12: Localization in the human face of 68 facial coordinate points [26] 

• 1-17 are points of the chin shape.  

• 18-22 are points of the left eyebrow.  

• 23-27 are points of the right eyebrow.  

• 28-31 are points of the nose.  

• 32-36 are points on the underside of the nose.  

• 37-42 are points of the left eye.  

• 43-48 are points of the right eye. 

 • 49-68 are points of the mouth. 



[ 

 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 52, Issue 11, No. 1, November : 2023 
[ 

 

UGC CARE Group-1,                                                                                                                 151 

 The collected data has been organized into a CSV file, where each line corresponds to the X and Y 

coordinates of facial points within the dataset. Each row of this file corresponds to a distinct face within 

the dataset, while the columns represent X and Y coordinates for each facial landmark, structured as 

x0, y0, x1, y1, and so forth. Additionally, there exists another file indicating the specific emotion 

associated with each face. This file features the same number of rows as the previous one, but with 

only a single column since each face is linked to a single emotion. 

 

V.  Japanese Female Facial Expression [JAFFE] Dataset 

For effective model training, it's crucial to possess datasets that exhibit clearly categorized emotions 

and a sufficient volume of data to optimize model performance. In this section, we introduce the 

datasets employed in the course of this study. 

The Japanese Female Facial Expression (JAFFE) Database encompasses two hundred and thirteen 

images, each capturing seven distinct emotional expressions portrayed by ten Japanese female models 

[27]. This database was curated by the Psychology Department at Kyushu University. A glimpse of 

sample examples can be observed in Figure 13. 

.  

Figure 13: JAFFE example [27] 

 

VI. Machine Learning Classifications 

Machine learning is focused on exploring the recognition of patterns and facilitating computers to learn 

autonomously. It enables machines to acquire knowledge without the need for explicit programming. 

In this realm, algorithms play a pivotal role, deriving pertinent insights or conclusions from datasets, 

eliminating the necessity for human-generated instructions or code. The central objective of this field 

is to foster a collaborative interaction between humans and machines. This collaborative ethos is 

embodied by algorithms, which empower machines to perform tasks encompassing both general and 

specific domains. This learning process is executed through classifiers, algorithms that, upon receiving 

certain information about an object, can determine its category or class from a predefined set of 

possibilities. 

To evaluate performance, four classifiers have been selected, representing prominent families of 

algorithms that are widely recognized 

6.1 Support Vector Machine [SVM] 

Support Vector Machines (SVMs) comprise a collection of supervised learning algorithms [28],[29] 

that are closely aligned with classification and regression challenges. In the context of a set of training 

examples, wherein classes are labelled, SVMs are harnessed to construct a model that can predict the 

class of a novel sample. The essence of an SVM lies in its capability to portray sample points in a 

spatial context, effectively partitioning classes into maximally spacious domains via a hyperplane. This 

hyperplane serves as the demarcation boundary. When new samples are introduced to the model, they 

are assigned to a specific class based on the partitioned regions they fall within. In simpler terms, this 

model represents sample points within a high-dimensional space, employing a hyperplane to demarcate 

classes. This approach is suitable for both classification and regression tasks. Effective separation 

between classes ensures accurate classification, as depicted in Figure 14. 
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Fig14 : SVM feature selection1. 

6.2 Decision Tree [DT]  

Decision tree learning is a predictive modelling technique extensively employed in statistics, data 

mining, and machine learning [30],[31]. Within this framework, tree models tailored for scenarios 

where the target variable assumes a discrete set of values are referred to as classification trees. In such 

tree structures, class labels are situated in the leaves, while the branches encapsulate combinations of 

attributes that guide to those class labels. Conversely, when the target variable can assume continuous 

values, these tree models are termed regression trees. The primary goal of this classification technique 

is to construct a model capable of forecasting the outcome by mastering simple decision rules derived 

from data attributes. 

6.3 Random Forest [RF]  

The core concept behind random forests is to aggregate numerous models that might be noisy 

individually, yet exhibit a near-unbiased nature on average, thus mitigating variance. Trees are 

especially fitting candidates for bagging due to their capacity to encapsulate intricate interaction 

patterns within data, and if they reach sufficient depth, they maintain a comparatively low bias. As 

trees inherently exhibit noise, averaging them provides significant benefits [32],[33]. 

Each individual tree is crafted using the following procedure: 

- Given N as the count of test cases and M as the number of variables in the classifier. 

- Given m as the count of input variables utilized to determine a decision at a particular node; m should 

be significantly smaller than M. 

- Select a training subset for this tree and employ the remaining test cases to estimate the error. 

- For every node within the tree, randomly select m variables for decision-making. Compute the 

optimal partition of the training set based on the chosen m variables. 

 
Figure 15: Scheme of RF performance2. 

During prediction, a fresh case is traversed down the tree structure. It is eventually assigned the label 

of the terminal node it reaches. This sequence is repeated for all the trees in the ensemble, and the label 

that garners the highest occurrences is deemed the prediction. In essence, the estimator constructs 

multiple decision tree classifiers across various sub-samples of the dataset and leverages their averages 

to enhance predictive precision. A representation of this process's efficacy is depicted in Figure 11. 
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6.4 Experimental results 

This chapter will showcase the outcomes of various experiments conducted. However, it's crucial to 

highlight that almost all of the images feature posed expressions, with only the FER database 

containing spontaneous expressions. Recognizing spontaneous expressions poses a greater challenge. 

As a result, the accuracy results presented here would likely fare worse in a real-world application of 

these learning architectures. 

Metrics for evaluation 

To assess the effectiveness of the learning algorithms, a diverse set of metrics is employed. Among 

these metrics, the confusion matrices and classification accuracy of our system stand out. These two 

evaluation methods have been selected due to their widespread usage by other researchers. 

Accuracy: A parameter that quantifies the success of a model's predictions. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑐𝑡𝑒𝑑 𝑒𝑚𝑜𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑒𝑚𝑜𝑡𝑖𝑜𝑛𝑠
∗ 100 

Confusion matrix: A tool that provides insight into the distribution of predictions, indicating successful 

and incorrect predictions. The matrix values are presented as percentages. 

Losses: A parameter that highlights the samples lost due to incorrect predictions. It quantifies the 

degree of error between the calculated output and the desired response to that output. 

 
Graph 1 : Comparison of different feature extractions Accuracy using SVM,DT,RF 
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DT 86 

RF 79 

Completed LBP 

SVM 83 

DT 69 

RF 82 

Proposed LBP+68 Feature Points 

SVM 98 

DT 89 

RF 92 

Table 1: Comparisons for Different Feature Extraction methods 

                                        

ML Classifications Accuracy 

(%) 

Time(in sec) 

SVM 98 7 

DT 89 15 

RF 92 10 

Table 2: Accuracy summary for machine learning on JAFFE dataset 

Evidently, a substantial disparity exists in the effectiveness of the algorithms. Support Vector 

Machines and Multilayer Perceptron achieve higher accuracy at around 98% and 89%, respectively, 

while Decision Tree and Random Forest achieve approximately 92% accuracy. These results stem 

from the fact that SVM and RF are more intricate algorithms, capable of considering the complexities 

within the features. There are shared characteristics among all these algorithms. They excel in 

recognizing happiness emotions, but struggle with identifying sadness, often confusing it with neutral 

or anger emotions. This observation is supported by examining the confusion matrices depicting the 

performance of these three algorithms on the JAFFE database. 

Emotions Afraid Angry Disg. Happy Neutr. Sad Surpr. 

Afraid 89 2 0 1 0 3 5 

Angry 4 90 1 0 5 3 0 

Disg. 0 2 92 0 6 0 0 

Happy 0 0 2 88 4 0 5 

Neutr. 2 0 4 0 86 2 4 

Sad 1 2 0 3 0 90 4 

Surpr. 2 0 3 0 2 0 93 

Table3: Accuracy for SVM with JAFFE Dataset image. 

Table4: Accuracy for DT with JAFFE Dataset images 

 

Emotions Afraid Angry Disg. Happy Neutr. Sad Surpr. 

Afraid 90 2 0 2 2 0 4 

Angry 0 89 4 2 4 0 1 

Disg. 1 0 95 0 0 2 2 

Happy 3 0 2 80 0 10 5 

Neutr. 0 2 4 0 82 8 4 

Sad 1 0 0 8 0 91 0 

Surpr. 0 0 10 4 0 0 86 
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Emotions Afraid Angry Disg. Happy Neutr. Sad Surpr. 

Afraid 80 6 0 4 6 0 4 

Angry 0 85 4 6 0 0 5 

Disg. 10 0 75 5 0 10 0 

Happy 3 0 7 80 0 5 5 

Neutr. 1 0 4 0 81 8 4 

Sad 1 0 0 9 0 90 0 

Surpr. 0 0 9 4 0 1 86 

Table5: Accuracy for RF with JAFFE Dataset images. 

 

VII. Conclusion 

In conclusion, this study explored Facial Expression Recognition (FER) using diverse machine 

learning algorithms. The research spanned preprocessing, feature extraction, dimensionality reduction, 

and classification, aiming to decode human emotions from facial images. Different Local Binary 

Pattern (LBP) variants, including DLTP, were applied to capture textural data effectively. The 

proposed methodology involves the extraction of DLTP feature points, complemented by 68 distinct 

features encompassing geometric, statistical, and texture-based attributes for high accuracy with less 

complex time. This combined feature set captures both local and holistic information present within 

the emotion-related facial expressions. These techniques demonstrated meaningful feature extraction 

for emotional portrayal. Evaluation revealed varying performance trends. SVM and Multilayer 

Perceptron excelled in complex feature understanding, while Decision Tree and Random Forest 

exhibited commendable but slightly lower accuracy. Recognizing emotions displayed varying 

proficiency, with happiness evident and sadness often confused with neutral or anger emotions. While 

accuracy progress was achieved, challenges persist, particularly with spontaneous expressions. The 

evolving synergy between machine learning and datasets propels FER advancement. As technology 

evolves, decoding emotions from facial images offers promising applications in affective computing, 

human-computer interaction, and more. 
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