
[

[

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 11, No. 3, November : 2023
[

UGC CARE Group-1, 105

OPTIMIZATION OF TRANSPORTATION COST THROUGH DATA SCIENCE USING

PYTHON

M. Lakshmana Rao, Department of Mechanical Engg Madanapalle Institute of Technology &

Science, Madanapalle, A.P., India

B. Raghukumar, Dept of Mechanical Engg PVP Siddhartha Institute of Technology, Kanur,

Vijayawada

G. Harinath Gowd, Dept of Mechanical Engg ,Vemu Institute of Technology, Tirupati

N. Gangi Setty, Department of Management studies, Madanapalle Institute of Technology &

Science, Madanapalle, A.P., India

Abstract

Operations Research seeks the optimal solution to a problem. This optimal solution is not just a

solution that provides the best result, but the solutions have been calculated after considering the

various aspects of time and cost constraints. Linear Programming is the analysis of problems in which

a linear function of a number of variables is to be optimized (maximized or minimized) when those

variables are subject to a number of constraints in the mathematical linear inequalities. The

transportation Model is one type of linear programming which is to transport similar quantities which

are initially stored at various origins(supply) to different destinations (demand) in such a way that the

total transportation cost is minimum. In this modern automated world still, companies are facing a high

amount to transport their goods all over the country, which impacts fits. So, we decided to use the

Linear Programming algorithm with Python. For getting the optimal solution used linear Programming

optimal algorithm, which helps the industries to optimize their transportation cost. This study helpful

for developing an algorithm for logistic industry.

1. Introduction

Operations Research provides a facility to decision maker to evaluate the given problems,

identify the alternative solutions, recognize the constraints and then assist the decision maker to have

the best possible solution available, which is known as optimal solution. Operation Research also

provides the quantitative and qualitative aid to the problems, so that it will become easier for decision

maker to predict the future outcomes of the solution. The uncertainty of future and complexities of

present scenarios increases the responsibility of decision maker to take the accurate decision for the

organization. Operations Research theory makes the problems of real-life more structured and hence,

easily solvable and has correct answers. In Operations Research, Linear Programming is one of the

models in mathematical programming, which is very broad and vast. Mathematical programming

includes many more optimization models known as Stochastic programming, Integer Programming,

and Dynamic Programming – each one of them is an efficient optimization technique to solve the

problem with a specific structure, which depends on the assumptions made in formulating the model.

We can remember that the general linear programming model is based on assumptions [1]. A few of

the areas where operations research finds application are presented in Fig.1.

[

[

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 11, No. 3, November : 2023
[

UGC CARE Group-1, 106

Figure 1. Applications of operations research.

2. Methodology

The North West Corner (NWC) rule is used to find the initial feasible solution to the considered

transportation problem as mentioned in Table 1. The obtained solution is optimized using MODI

method in the next stage. A python code was used to obtain the solutions of NWC and MODI methods.

Table 1. Transportation problem considered in the present work [2].

To

Source
A B C Supply

X 5 6 4 50

Y 6 6 3 40

Z 3 9 6 60

Demand 20 95 35 150

2.1 North West Corner (NWC) Algorithm

The NWC algorithm is one of the methods to obtain a basic feasible solution of transportation

problems [3,4]. The steps involved in NWC method are as follows:

• Step 1: Formulate the transportation model into a 2-D matrix along with supply and demand

requirements.

• Step 2: Now check the matrix for balanced. If it is balanced move on with the below steps or add

the particular row or column with the particular element in the supply or demand.

• Step 3: Choose the element based on direction North-West and allocate the value which is smaller

between supply and demand.

• Step 4: Now we have to delete the smaller from the bigger number and delete that row or column

which is taken into consideration in step 2.

• Step 5: Now after the reduction consider the matrix again consider North-West direction and repeat

the steps 2 and 3 until the values of supply and demand becomes zero.

• Step 6: Obtain the initial basic feasible solution.

2.2 MODI method with algorithm

The obtained initial feasible solution is optimized using MODI method [5]. The steps involved

in MODI method are described below.

• Step 1: After getting initial feasible solution using North West Corner Method we have to check

for optimal solution using MODI method.

• Step 2: Finding the values of two variable’s ui and vj with ui + vj = cij

• Step 3: Finding the opportunity cost using cij – (ui + vj).

• Step 4: We have to check the sign for the opportunity if positive or zero the given solution is the

optimal solution. If any of the unoccupied cell opportunity is negative then futher savings can be

possible in transportation.

[

[

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 11, No. 3, November : 2023
[

UGC CARE Group-1, 107

• Step 5: Select the least possible opportunity cell in the matrix which is helpful in the next step.

• Step 6: ow we have to draw a closed loop with right angle turn with only occupied cells and the

previous selected cell.

• Step 7: Give the plus or minus to the closed loop starting with the selected cell with positive sign.

• Step 8: Now we have to make the unoccupied cell by considering the smallest value in the negative

sign and add the value to the positive signs and subtract the value for negative signs. Now we

unoccupied cell becomes an occupied cell.

• Step 9: Now we again do the opportunities if all are positive, we get the optimal solution to the

problem else repeat the steps (2-8).

3. Optimization of transportation problem using python

The programming language used in the present study is Python. Codes were written on IDLE

platform to estimate the initial feasible solution using NWC rule and subsequently optimize it based

on MODI method. The code is described below.

import sys

def getCostMatrix():

 numRows = int(input('Enter the number of

sources : '))+1

 numCols = int(input('Enter the number of

destinations : '))+1

 costMatrix = []

 for i in range(numRows-1):

 rowCostArray=list(map(int, input('Enter

the costs for source %s and the total supply at

the end, separated by space\n'%(i+1)).split()))

 costMatrix.append(rowCostArray)

 rowCostArray = list(map(int, input('Enter

the demand values for each destination

separated by space\n').split()))

 costMatrix.append(rowCostArray)

 if len(costMatrix[numRows-1]) != numCols:

 costMatrix[numRows-1].append(0)

 return costMatrix

def printMatrix(matrixType, matrix):

 print("---

------------------------")

 if matrixType=='cost':

 print("Cost Matrix")

 elif matrixType=='allocation':

 print("Allocation Matrix")

 for i in range(len(matrix[0])-1):

 print('\tD%s'%(i+1), end='')

 print('\tSupply')

 for i in range(len(matrix)-1):

 print('S%s'%(i+1), end='')

 for j in range(len(matrix[0])):

 print('\t%s'%(matrix[i][j]), end='')

 print()

 print('Demand', end='')

 for i in range(len(matrix[0])):

 print('\t%s'%(matrix[-1][i]),end='')

 print("\n---

--------------------------")

 print()

def isBalanced(costMatrix):

 return sum(costMatrix[-

1])==sum([costMatrix[i][-1] for i in

range(len(costMatrix))])

def getTotalCost(costMatrix):

 m = len(costMatrix)

 n = len(costMatrix[0])

 allocMatrix = [[0 for _ in

range(len(costMatrix[0]))] for _ in

range(len(costMatrix))]

 numAllocated = 0

 totalCost = 0

 i=0

 j=0

 while i<m-1 and j<n-1:

 x = min(costMatrix[i][n-1], costMatrix[m-

1][j])

 costMatrix[m-1][j] -= x

 costMatrix[i][n-1] -= x

 numAllocated += 1

 allocMatrix[i][j] = x

[

[

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 11, No. 3, November : 2023
[

UGC CARE Group-1, 108

 allocMatrix[m-1][j] = costMatrix[m-1][j]

 allocMatrix[i][n-1] = costMatrix[i][n-1]

 totalCost = totalCost + x*costMatrix[i][j]

 if costMatrix[m-1][j] < costMatrix[i][n-

1]:

 j+=1

 elif costMatrix[m-1][j] > costMatrix[i][n-

1]:

 i+=1

 else:

 i+=1

 j+=1

 return totalCost, numAllocated, allocMatrix

def isDegenerate(costMatrix, numAllocated):

 m = len(costMatrix)-1

 n = len(costMatrix[0])-1

 return numAllocated!=(m+n-1)

def balanceProblem(costMatrix):

 totalDemand = sum(costMatrix[-1])

 totalSupply = sum([x[-1] for x in

costMatrix])

 if totalDemand > totalSupply:

 #add new row

 dummySource = [0 for _ in

range(len(costMatrix[0]))]

 dummySource[-1] = totalDemand-

totalSupply

 costMatrix.insert(-1, dummySource)

 else:

 for cost in costMatrix:

 cost.insert(-1, 0)

 costMatrix[-1].insert(-1, totalSupply-

totalDemand)

 pass

 return costMatrix

def isIndependentAllocation(allocMatrix):

 elimRows = [0 for _ in

range(len(allocMatrix))]

 elimCols = [0 for _ in

range(len(allocMatrix[0]))]

 while 1:

 flag = 0

 #eliminate row

 for i in range(len(allocMatrix)):

 if elimRows[i]==0:

 if len([allocMatrix[i][j] for j in

range(len(allocMatrix[0])) if (elimCols[j]==0

and (allocMatrix[i][j]!=0 and

allocMatrix[i][j]!=-1))]) < 2:

 elimRows[i]=1

 flag=1

 #eliminate column

 for j in range(len(allocMatrix[0])):

 if elimCols[j]==0:

 if len([allocMatrix[i][j] for i in

range(len(allocMatrix)) if (elimRows[i]==0

and allocMatrix[i][j]!=0 and

allocMatrix[i][j]!=-1)]) < 2:

 elimCols[j]=1

 flag=1

 if flag==0:

 #either all cells are eliminated --->

independent allocation

 if 0 not in elimRows and 0 not in

elimCols:

 return True,1,1

 else:

 #dependent allocation

 return False,elimRows,elimCols

def findUV(costMatrix, allocMat):

 #find the max allocated row/col

 u = [None for _ in range(len(allocMat))]

 v = [None for _ in range(len(allocMat[0]))]

 maxRow=[-1,0] #(row no., allocs)

 for i in range(len(allocMat)):

 allocs = len([allocMat[i][j] for j in

range(len(allocMat[0])) if allocMat[i][j]!=0])

 if allocs > maxRow[1]:

 maxRow[0] = i

 maxRow[1] = allocs

 maxCol = [-1,0]

 for j in range(len(allocMat[0])):

[

[

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 11, No. 3, November : 2023
[

UGC CARE Group-1, 109

 allocs = len([allocMat[i][j] for i in

range(len(allocMat)) if allocMat[i][j]!=0])

 if allocs > maxCol[1]:

 maxCol[0] = j

 maxCol[1] = allocs

 if maxRow[1] > maxCol[1] :

 u[maxRow[0]] = 0

 for j in range(len(v)):

 if allocMat[maxRow[0]][j]!=0 and v[j]

is None:

 v[j] = costMatrix[maxRow[0]][j] -

u[maxRow[0]]

 for i in range(len(u)):

 for j in range(len(v)):

 if allocMat[i][j]!=0 and v[j] is not

None and u[i] is None:

 u[i] = costMatrix[i][j] - v[j]

 else:

 v[maxCol[0]] = 0

 for i in range(len(u)):

 if allocMat[i][maxCol[0]]!=0 and u[i] is

None:

 u[i] = costMatrix[i][maxCol[0]] -

v[maxCol[0]]

 for j in range(len(v)):

 for i in range(len(u)):

 if allocMat[i][j]!=0 and v[j] is None

and u[i] is not None:

 v[j] = costMatrix[i][j] - u[i]

 while None in u or None in v:

 if None in u:

 ind = u.index(None)

 for j in range(len(v)):

 if allocMat[ind][j]!=0 and v[j] is not

None:

 u[ind] = costMatrix[ind][j] - v[j]

 if None in v:

 ind = v.index(None)

 for i in range(len(u)):

 if allocMat[i][ind]!=0 and u[i] is not

None:

 v[ind] = costMatrix[i][ind] - u[i]

 return u,v

def findDeltas(cstMat, allMat, u,v):

 deltas = [[None for _ in

range(len(allMat[0]))] for _ in

range(len(allMat))]

 for i in range(len(allMat)):

 for j in range(len(allMat[0])):

 if allMat[i][j]==0:

 deltas[i][j] = cstMat[i][j] - u[i] - v[j]

 return deltas

def isOptimal(deltas):

 for i in range(len(deltas)):

 for j in range(len(deltas[0])):

 if deltas[i][j] is not None and deltas[i][j]

< 0:

 return False

 return True

def newAlloc(allMat, deltas):

 #find the most negative

 ij= [-1,-1]

 mostNeg = 1

 for i in range(len(deltas)):

 for j in range(len(deltas[0])):

 if deltas[i][j] is not None and deltas[i][j]

< 0 and deltas[i][j] < mostNeg:

 mostNeg = deltas[i][j]

 ij[0] = i

 ij[1] = j

 #find loop

 allMat[ij[0]][ij[1]] = sys.maxsize

 _,elimRows,elimCols =

isIndependentAllocation(allMat)

 rowinds = [i for i in range(len(elimRows)) if

elimRows[i]==0]

 colinds = [i for i in range(len(elimCols)) if

elimCols[i]==0]

 path = [[ij[0],ij[1]]]

 indices = [[x,y] for x in rowinds for y in

colinds if allMat[x][y]!=0]

 indices.remove(path[0])

 dist = sys.maxsize

[

[

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 11, No. 3, November : 2023
[

UGC CARE Group-1, 110

 inds = []

 n = len(indices)+1

 while len(path)!=n:

 t = len(indices)

 dist = sys.maxsize

 for i in range(t):

 d = abs(path[-1][0]-

indices[i][0])+abs(path[-1][1] - indices[i][1])

 if d < dist:

 dist = d

inds.append([indices[i][0],indices[i][1]])

 path.append(inds[0])

 inds.clear()

 indices.remove(path[-1])

 #modify allocation

 val = min([allMat[path[t][0]][path[t][1]] for

t in range(1,len(path),2) if

allMat[path[t][0]][path[t][1]]!=0.000001])

 allMat[path[0][0]][path[0][1]] = 0

 for i in range(len(path)):

 if i%2==0:

 allMat[path[i][0]][path[i][1]] += val

 else:

 allMat[path[i][0]][path[i][1]] -= val

 #num Allocs

 numAlloc=0

 for i in range(len(allMat)):

 for j in range(len(allMat[0])):

 if allMat[i][j]>0:

 numAlloc+=1

 return allMat, numAlloc

def removeDeg(allMat, cstMat):

 for i in range(len(allMat)):

 for j in range(len(allMat[0])):

 if allMat[i][j]==0:

 allMat[i][j] = 0.000001

 isIndep = isIndependentAllocation(

allMat)[0]

 if isIndep:

 return allMat

 else:

 allMat[i][j] = 0

 return allMat

def main():

 #1. get the cost matrix

 costMatrix = getCostMatrix()

 printMatrix('cost', costMatrix)

 #2. check if the problem is balanced

 isBal = isBalanced(costMatrix)

 if isBal:

 print('It is a balanced problem')

 else:

 print('It is an unbalanced problem')

 costMatrix = balanceProblem(costMatrix)

 #3. calculate the cost

 cost, numAllocated, allocMatrix =

getTotalCost(costMatrix)

 printMatrix('allocation', allocMatrix)

 print('Calculated total cost = ',cost)

 cstMat = [x[:-1] for x in costMatrix]

 cstMat.pop()

 allMat = [x[:-1] for x in allocMatrix]

 allMat.pop()

 while 1:

 #4. check for degeneracy

 isDeg = isDegenerate(costMatrix,

numAllocated)

 if isDeg:

 print('It is a degenerate

solution\nMaking it a non-degenerate

solution...\n')

 allMat = removeDeg(allMat, cstMat)

 numAllocated+=1

 print('\nModified Non-degenerate

allocation\n')

 for i in range(len(allMat[0])):

 print('\t\tD%s'%(i+1), end='')

 print()

 for i in range(len(allMat)):

 print('S%s'%(i+1), end='')

 for j in range(len(allMat[0])):

 print('\t\t',allMat[i][j],end='')

 print()

 print()

[

[

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 11, No. 3, November : 2023
[

UGC CARE Group-1, 111

 continue

 return

 else:

 print('It is a non-degenerate solution')

 #5 check for independent allocation

position

 isIndep = isIndependentAllocation(allMat

)[0]

 if isIndep:

 print('The allocation positions are

independent')

 else:

 print('The allocation positions are not

independent')

 return

 #6 calculate u and v values

 u,v = findUV(cstMat, allMat)

 print('u values = ',u)

 print('v values = ',v)

 #find delta[i,j] at unallocated positions

 deltas = findDeltas(cstMat, allMat,u,v)

 if (isOptimal(deltas)):

 print('Optimal allocation : \n')

 for i in range(len(allMat[0])):

 print('\t\tD%s'%(i+1), end='')

 print()

 for i in range(len(allMat)):

 print('S%s'%(i+1), end='')

 for j in range(len(allMat[0])):

 print('\t\t',allMat[i][j],end='')

 print()

 print()

 cost = 0

 for i in range(len(cstMat)):

 for j in range(len(cstMat[0])):

 cost = cost +

cstMat[i][j]*allMat[i][j]

 print('Optimal cost = ',cost)

 return

 else:

 print('It is a non-optimal solution')

 allocMatrix, numAllocated =

newAlloc(allMat, deltas)

 print('\nModified Allocation\n')

 for i in range(len(allMat[0])):

 print('\t\tD%s'%(i+1), end='')

 print()

 for i in range(len(allMat)):

 print('S%s'%(i+1), end='')

 for j in range(len(allMat[0])):

 print('\t\t',allMat[i][j],end='')

 print()

 print()

main()

The output obtained via the developed code is presented in Fig. 2.

[

[

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 11, No. 3, November : 2023
[

UGC CARE Group-1, 112

Fig. 2. Output obtained via the written code.

4. Conclusions

The following conclusions are drawn from the current study.

• The NCW rule is employed to obtain initial feasible solution to the considered transporation

problem.

• Subsequently, MODI method was used optimize the initial feasible solution.

• Python language was used model the NCW and MODI methods in sequence to obtain the optimized

solution for the transportation problem. The code presented reasonably good output.

• The python based method presented in this study is beneficial for logistical industry.

• New algorithm has been developed for logistical industry

References

[1] Murthy, P. Rama. Operations research (linear programming). bohem press, 2005.

[2] Klinz, Bettina, and Gerhard J. Woeginger. "The Northwest corner rule revisited." Discrete applied

mathematics 159, no. 12 (2011): 1284-1289.

[3] Mishra, Shraddha. "Solving transportation problem by various methods and their comparison."

International Journal of Mathematics Trends and Technology 44, no. 4 (2017): 270-275.

[4] Kanti Swarup ,P. K. Gupta ,Man Mohan . “Operation Research”, Sultan Chand & Sons, New Delhi,

2005.

[5] George, Gisha, P. Uma Maheswari, and K. Ganesan. "A modified method to solve fuzzy

transportation problem involving trapezoidal fuzzy numbers." In AIP Conference Proceedings, vol.

2277, no. 1, p. 090005. AIP Publishing LLC, 2020.

