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Abstract 

Operations Research seeks the optimal solution to a problem. This optimal solution is not just a 

solution that provides the best result, but the solutions have been calculated after considering the 

various aspects of time and cost constraints. Linear Programming is the analysis of problems in which 

a linear function of a number of variables is to be optimized (maximized or minimized) when those 

variables are subject to a number of constraints in the mathematical linear inequalities. The 

transportation Model is one type of linear programming which is to transport similar quantities which 

are initially stored at various origins(supply) to different destinations (demand) in such a way that the 

total transportation cost is minimum. In this modern automated world still, companies are facing a high 

amount to transport their goods all over the country, which impacts fits. So, we decided to use the 

Linear Programming algorithm with Python. For getting the optimal solution used linear Programming 

optimal algorithm, which helps the industries to optimize their transportation cost. This study helpful 

for developing an algorithm for logistic industry. 

 

1. Introduction 

Operations Research provides a facility to decision maker to evaluate the given problems, 

identify the alternative solutions, recognize the constraints and then assist the decision maker to have 

the best possible solution available, which is known as optimal solution. Operation Research also 

provides the quantitative and qualitative aid to the problems, so that it will become easier for decision 

maker to predict the future outcomes of the solution. The uncertainty of future and complexities of 

present scenarios increases the responsibility of decision maker to take the accurate decision for the 

organization. Operations Research theory makes the problems of real-life more structured and hence, 

easily solvable and has correct answers. In Operations Research, Linear Programming is one of the 

models in mathematical programming, which is very broad and vast. Mathematical programming 

includes many more optimization models known as Stochastic programming, Integer Programming, 

and Dynamic Programming – each one of them is an efficient optimization technique to solve the 

problem with a specific structure, which depends on the assumptions made in formulating the model. 

We can remember that the general linear programming model is based on assumptions [1]. A few of 

the areas where operations research finds application are presented in Fig.1.  
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Figure 1. Applications of operations research. 

2. Methodology 

The North West Corner (NWC) rule is used to find the initial feasible solution to the considered 

transportation problem as mentioned in Table 1. The obtained solution is optimized using MODI 

method in the next stage. A python code was used to obtain the solutions of NWC and MODI methods.  

Table 1. Transportation problem considered in the present work [2]. 

To 

Source 
A B C Supply 

X 5 6 4 50 

Y 6 6 3 40 

Z 3 9 6 60 

Demand 20 95 35 150 

2.1 North West Corner (NWC) Algorithm 

The NWC algorithm is one of the methods to obtain a basic feasible solution of  transportation 

problems [3,4]. The steps involved in NWC method are as follows: 

• Step 1: Formulate the transportation model into a 2-D matrix along with supply and demand 

requirements. 

• Step 2: Now check the matrix for balanced. If it is balanced move on with the below steps or add 

the particular row or column with the particular element in the supply or demand. 

• Step 3: Choose the element based on direction North-West and allocate the value which is smaller 

between supply and demand. 

• Step 4: Now we have to delete the smaller from the bigger number and delete that row or column 

which is taken into consideration in step 2. 

• Step 5: Now after the reduction consider the matrix again consider North-West direction and repeat 

the steps 2 and 3 until the values of supply and demand becomes zero. 

• Step 6: Obtain the initial basic feasible solution. 

 

2.2 MODI method with algorithm 

The obtained initial feasible solution is optimized using MODI method [5]. The steps involved 

in MODI method are described below.  

• Step 1: After getting initial feasible solution using North West Corner Method we have to check 

for optimal solution using MODI method. 

• Step 2: Finding the values of two variable’s ui and vj  with ui + vj = cij  

• Step 3: Finding the opportunity cost using cij – ( ui + vj ). 

• Step 4: We have to check the sign for the opportunity if positive or zero the given solution is the 

optimal solution. If any of the unoccupied cell opportunity is negative then futher savings can be 

possible in transportation. 
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• Step 5: Select the least possible opportunity cell in the matrix which is helpful in the next step. 

• Step 6: ow we have to draw a closed loop with right angle turn with only occupied cells and the 

previous selected cell. 

• Step 7: Give the plus or minus to the closed loop starting with the selected cell with positive sign. 

• Step 8: Now we have to make the unoccupied cell by considering the smallest value in the negative 

sign and add the value to the positive signs and subtract the value for negative signs. Now we 

unoccupied cell becomes an occupied cell. 

• Step 9: Now we again do the opportunities if all are positive, we get the optimal solution to the 

problem else repeat the steps (2-8). 

 

3. Optimization of transportation problem using python 

The programming language used in the present study is Python. Codes were written on IDLE 

platform to estimate the initial feasible solution using NWC rule and subsequently optimize it based 

on MODI method. The code is described below.  

import sys 

def getCostMatrix(): 

    numRows = int(input('Enter the number of 

sources : '))+1 

    numCols = int(input('Enter the number of 

destinations : '))+1 

    costMatrix = [] 

    for i in range(numRows-1): 

        rowCostArray=list(map(int, input('Enter 

the costs for source %s and the total supply at 

the end, separated by space\n'%(i+1)).split())) 

        costMatrix.append(rowCostArray) 

    rowCostArray = list(map(int, input('Enter 

the demand values for each destination 

separated by space\n').split())) 

    costMatrix.append(rowCostArray) 

    if len(costMatrix[numRows-1]) != numCols: 

        costMatrix[numRows-1].append(0) 

    return costMatrix 

 

def printMatrix(matrixType, matrix): 

    print("---------------------------------------------

------------------------") 

    if matrixType=='cost': 

        print("Cost Matrix") 

    elif matrixType=='allocation': 

        print("Allocation Matrix") 

    for i in range(len(matrix[0])-1): 

        print('\tD%s'%(i+1), end='') 

    print('\tSupply') 

     

    for i in range(len(matrix)-1): 

        print('S%s'%(i+1), end='') 

        for j in range(len(matrix[0])): 

            print('\t%s'%(matrix[i][j]), end='') 

        print() 

    print('Demand', end='') 

    for i in range(len(matrix[0])): 

        print('\t%s'%(matrix[-1][i]),end='') 

    print("\n-------------------------------------------

--------------------------") 

    print() 

     

def isBalanced(costMatrix): 

    return sum(costMatrix[-

1])==sum([costMatrix[i][-1] for i in 

range(len(costMatrix))]) 

 

def getTotalCost(costMatrix): 

    m = len(costMatrix) 

    n = len(costMatrix[0]) 

    allocMatrix = [[0 for _ in 

range(len(costMatrix[0]))] for _ in 

range(len(costMatrix))] 

    numAllocated = 0 

    totalCost = 0 

    i=0 

    j=0 

    while i<m-1 and j<n-1: 

        x = min(costMatrix[i][n-1], costMatrix[m-

1][j]) 

        costMatrix[m-1][j] -= x 

        costMatrix[i][n-1] -= x 

        numAllocated += 1 

 

        allocMatrix[i][j] = x 
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        allocMatrix[m-1][j] = costMatrix[m-1][j] 

        allocMatrix[i][n-1] = costMatrix[i][n-1] 

         

        totalCost = totalCost + x*costMatrix[i][j] 

 

        if costMatrix[m-1][j] < costMatrix[i][n-

1]: 

            j+=1 

        elif costMatrix[m-1][j] > costMatrix[i][n-

1]: 

            i+=1 

        else: 

            i+=1 

            j+=1 

 

    return totalCost, numAllocated, allocMatrix 

             

def isDegenerate(costMatrix, numAllocated): 

    m = len(costMatrix)-1 

    n = len(costMatrix[0])-1 

    return numAllocated!=(m+n-1) 

 

def balanceProblem(costMatrix): 

    totalDemand = sum(costMatrix[-1]) 

    totalSupply = sum([x[-1] for x in 

costMatrix]) 

    if totalDemand > totalSupply: 

        #add new row 

        dummySource = [0 for _ in 

range(len(costMatrix[0]))] 

        dummySource[-1] = totalDemand-

totalSupply 

        costMatrix.insert(-1, dummySource) 

    else: 

        for cost in costMatrix: 

            cost.insert(-1, 0) 

        costMatrix[-1].insert(-1, totalSupply-

totalDemand) 

        pass 

    return costMatrix 

 

def isIndependentAllocation( allocMatrix ): 

    elimRows = [0 for _ in 

range(len(allocMatrix))] 

    elimCols = [0 for _ in 

range(len(allocMatrix[0]))] 

    while 1: 

        flag = 0 

        #eliminate row 

        for i in range(len(allocMatrix)): 

            if elimRows[i]==0: 

                if len([allocMatrix[i][j] for j in 

range(len(allocMatrix[0])) if (elimCols[j]==0 

and (allocMatrix[i][j]!=0 and 

allocMatrix[i][j]!=-1))]) < 2: 

                    elimRows[i]=1 

                    flag=1 

 

        #eliminate column 

        for j in range(len(allocMatrix[0])):  

            if elimCols[j]==0: 

                if len([allocMatrix[i][j] for i in 

range(len(allocMatrix)) if (elimRows[i]==0 

and allocMatrix[i][j]!=0 and 

allocMatrix[i][j]!=-1)  ]) < 2: 

                    elimCols[j]=1 

                    flag=1 

                     

        if flag==0: 

            #either all cells are eliminated  ---> 

independent allocation 

            if 0 not in elimRows and 0 not in 

elimCols: 

                return True,1,1 

            else: 

                #dependent allocation 

                return False,elimRows,elimCols 

 

def findUV( costMatrix, allocMat ): 

    #find the max allocated row/col 

    u = [None for _ in range(len(allocMat))] 

    v = [None for _ in range(len(allocMat[0]))] 

     

    maxRow=[-1,0] #(row no., allocs) 

    for i in range(len(allocMat)): 

        allocs = len([allocMat[i][j] for j in 

range(len(allocMat[0])) if allocMat[i][j]!=0]) 

        if allocs > maxRow[1]: 

            maxRow[0] = i 

            maxRow[1] = allocs 

 

    maxCol = [-1,0] 

    for j in range(len(allocMat[0])): 
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        allocs = len([ allocMat[i][j] for i in 

range(len(allocMat)) if allocMat[i][j]!=0 ]) 

        if allocs > maxCol[1]: 

            maxCol[0] = j 

            maxCol[1] = allocs 

 

    if maxRow[1] > maxCol[1] : 

        u[maxRow[0]] = 0 

        for j in range(len(v)): 

            if allocMat[maxRow[0]][j]!=0 and v[j] 

is None: 

                v[j] = costMatrix[maxRow[0]][j] - 

u[maxRow[0]] 

 

        for i in range(len(u)): 

            for j in range(len(v)): 

                if allocMat[i][j]!=0 and v[j] is not 

None and u[i] is None: 

                    u[i] = costMatrix[i][j] - v[j] 

                     

    else: 

        v[maxCol[0]] = 0 

        for i in range(len(u)): 

            if allocMat[i][maxCol[0]]!=0 and u[i] is 

None: 

                u[i] = costMatrix[i][maxCol[0]] - 

v[maxCol[0]] 

 

        for j in range(len(v)): 

            for i in range(len(u)): 

                if allocMat[i][j]!=0 and v[j] is None 

and u[i] is not None: 

                    v[j] = costMatrix[i][j] - u[i] 

 

    while None in u or None in v: 

        if None in u: 

            ind = u.index(None) 

            for j in range(len(v)): 

                if allocMat[ind][j]!=0 and v[j] is not 

None: 

                    u[ind] = costMatrix[ind][j] - v[j] 

        if None in v: 

            ind = v.index(None) 

            for i in range(len(u)): 

                if allocMat[i][ind]!=0 and u[i] is not 

None: 

                    v[ind] = costMatrix[i][ind] - u[i] 

             

    return u,v 

     

def findDeltas(cstMat, allMat, u,v ): 

    deltas = [[None for _ in 

range(len(allMat[0]))] for _ in 

range(len(allMat))] 

    for i in range(len(allMat)): 

        for j in range(len(allMat[0])): 

            if allMat[i][j]==0: 

                deltas[i][j] = cstMat[i][j] - u[i] - v[j] 

 

    return deltas 

 

def isOptimal(deltas):  

    for i in range(len(deltas)): 

        for j in range(len(deltas[0])): 

            if deltas[i][j] is not None and deltas[i][j] 

< 0: 

                return False 

    return True 

 

def newAlloc(allMat, deltas): 

    #find the most negative 

    ij= [-1,-1] 

    mostNeg = 1 

    for i in range(len(deltas)): 

        for j in range(len(deltas[0])): 

            if deltas[i][j] is not None and deltas[i][j] 

< 0 and deltas[i][j] < mostNeg: 

                mostNeg = deltas[i][j] 

                ij[0] = i 

                ij[1] = j 

 

    #find loop 

    allMat[ij[0]][ij[1]] = sys.maxsize 

    _,elimRows,elimCols = 

isIndependentAllocation( allMat ) 

    rowinds = [i for i in range(len(elimRows)) if 

elimRows[i]==0] 

    colinds = [i for i in range(len(elimCols)) if 

elimCols[i]==0] 

    path = [[ij[0],ij[1]]] 

    indices = [[x,y] for x in rowinds for y in 

colinds if allMat[x][y]!=0] 

    indices.remove(path[0]) 

    dist = sys.maxsize 
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    inds = [] 

    n = len(indices)+1 

    while len(path)!=n: 

        t = len(indices) 

        dist = sys.maxsize 

        for i in range(t): 

            d = abs(path[-1][0]-

indices[i][0])+abs(path[-1][1] - indices[i][1]) 

            if d < dist: 

                dist = d 

                

inds.append([indices[i][0],indices[i][1]]) 

        path.append(inds[0]) 

        inds.clear() 

        indices.remove(path[-1]) 

 

    #modify allocation 

    val = min([allMat[path[t][0]][path[t][1]] for 

t in range(1,len(path),2) if 

allMat[path[t][0]][path[t][1]]!=0.000001]) 

    allMat[path[0][0]][path[0][1]] = 0 

    for i in range(len(path)): 

        if i%2==0: 

            allMat[path[i][0]][path[i][1]] += val 

        else: 

            allMat[path[i][0]][path[i][1]] -= val 

 

    #num Allocs 

    numAlloc=0 

    for i in range(len(allMat)): 

        for j in range(len(allMat[0])): 

            if allMat[i][j]>0: 

                numAlloc+=1 

                 

    return allMat, numAlloc 

 

def removeDeg(allMat, cstMat): 

    for i in range(len(allMat)): 

        for j in range(len(allMat[0])): 

            if allMat[i][j]==0: 

                allMat[i][j] = 0.000001 

                isIndep = isIndependentAllocation( 

allMat )[0] 

                if isIndep: 

                    return allMat 

                else: 

                    allMat[i][j] = 0 

     

    return allMat 

 

def main(): 

    #1. get the cost matrix 

    costMatrix = getCostMatrix() 

    printMatrix('cost', costMatrix) 

 

    #2. check if the problem is balanced 

    isBal = isBalanced(costMatrix) 

    if isBal: 

        print('It is a balanced problem') 

    else: 

        print('It is an unbalanced problem') 

        costMatrix = balanceProblem(costMatrix) 

 

    #3. calculate the cost 

    cost, numAllocated, allocMatrix = 

getTotalCost(costMatrix) 

    printMatrix('allocation', allocMatrix) 

    print('Calculated total cost = ',cost) 

 

    cstMat = [x[:-1] for x in costMatrix] 

    cstMat.pop() 

    allMat = [x[:-1] for x in allocMatrix] 

    allMat.pop() 

    while 1: 

        #4. check for degeneracy 

        isDeg = isDegenerate(costMatrix, 

numAllocated) 

        if isDeg: 

            print('It is a degenerate 

solution\nMaking it a non-degenerate 

solution...\n') 

            allMat = removeDeg(allMat, cstMat) 

            numAllocated+=1 

            print('\nModified Non-degenerate 

allocation\n') 

            for i in range(len(allMat[0])): 

                print('\t\tD%s'%(i+1), end='') 

            print() 

            for i in range(len(allMat)): 

                print('S%s'%(i+1), end='') 

                for j in range(len(allMat[0])): 

                    print('\t\t',allMat[i][j],end='') 

                print() 

            print() 
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            continue 

            return 

        else: 

            print('It is a non-degenerate solution') 

 

        #5 check for independent allocation 

position 

        isIndep = isIndependentAllocation(allMat 

)[0] 

        if isIndep: 

            print( 'The allocation positions are 

independent' ) 

        else: 

            print( 'The allocation positions are not 

independent' ) 

            return 

 

        

 #6 calculate u and v values 

        u,v = findUV( cstMat, allMat ) 

        print('u values = ',u) 

        print('v values = ',v) 

 

        #find delta[i,j] at unallocated positions 

        deltas = findDeltas(cstMat, allMat,u,v) 

 

        if (isOptimal(deltas)): 

            print('Optimal allocation : \n') 

            for i in range(len(allMat[0])): 

                print('\t\tD%s'%(i+1), end='') 

            print() 

            for i in range(len(allMat)): 

                print('S%s'%(i+1), end='') 

                for j in range(len(allMat[0])): 

                    print('\t\t',allMat[i][j],end='') 

                print() 

            print() 

 

            cost = 0 

            for i in range(len(cstMat)): 

                for j in range(len(cstMat[0])): 

                    cost = cost + 

cstMat[i][j]*allMat[i][j] 

            print('Optimal cost = ',cost) 

            return 

        else: 

            print('It is a non-optimal solution') 

            allocMatrix, numAllocated = 

newAlloc(allMat, deltas) 

            print('\nModified Allocation\n') 

            for i in range(len(allMat[0])): 

                print('\t\tD%s'%(i+1), end='') 

            print() 

            for i in range(len(allMat)): 

                print('S%s'%(i+1), end='') 

                for j in range(len(allMat[0])): 

                    print('\t\t',allMat[i][j],end='') 

                print() 

            print() 

             

 

main() 

 

The output obtained via the developed code is presented in Fig. 2.  
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Fig. 2. Output obtained via the written code. 

 

4. Conclusions 

The following conclusions are drawn from the current study.  

• The NCW rule is employed to obtain initial feasible solution to the considered transporation 

problem. 

• Subsequently, MODI method was used optimize the initial feasible solution.  

• Python language was used model the NCW and MODI methods in sequence to obtain the optimized 

solution for the transportation problem. The code presented reasonably good output.  

• The python based method presented in this study is beneficial for logistical industry.  

• New algorithm has been developed for logistical industry 
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