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Abstract-  

For many tasks, deep learning has yielded state-of-the-art outcomes. Although these methods for 

supervised learning have shown good results, they rely on the assumption that training and testing data 

come from the same distribution, which isn't always the case. In addition to this problem, single-source 

unsupervised domain adaptation may deal with scenarios in which the objective of achieving good 

test-time performance on the target domain is achieved by training a network on labelled data from a 

source domain and unlabeled data from a related but distinct target domain. In order to lessen 

dependency on potentially expensive target data labels, a number of single-source and generally 

homogenous unsupervised deep domain adaptation algorithms have been developed. These 

approaches combine domain adaptation with the potent, hierarchical representations from deep 

learning. By looking at different techniques, the distinctive and similar components, outcomes, and 

theoretical insights, this survey will compare various strategies. We then examine potential application 

areas and avenues for future study. 

Keywords— Supervised Learning, Domain Adaptation Algorithms, Expensive Target Data Labels, 

Approaches Combine Domain Adaptation. 

 

INTRODUCTION 

Perhaps the most common kind of machine learning is supervised learning, which has shown great 

promise in a wide range of application domains. The training and testing data are taken from the same 

distribution, which is a typical assumption made by many supervised learning techniques. A classifier 

trained on the source domain is likely to perform worse when tested on the target domain when this 

restriction is broken because of the differences between the two domains. The objective of single-

source domain adaptation is to learn a concept from labeled data in a source domain that excels on a 

distinct but related target domain. Unsupervised domain adaptation focuses on the scenario in which 

training is conducted using labeled source data and solely unlabeled target data. Because of its ability 

to adapt labeled data for use in a new application, domain adaptation can reduce the need for costly 

labeled data in the target domain. As an example, consider the problem of semantically segmenting 

images. Each real image in the Cityscapes dataset required approximately 1.5 hours to annotate for 

semantic segmentation. In this case, human annotation time could be spared by training an image 

semantic segmentation model on synthetic street view images (the source domain) since these can be 

cheaply generated, then adapting and testing for real street view images (the target domain, here the 

Cityscapes dataset). An undeniable trend in machine learning is the increased usage of deep neural 

networks. Deep networks have produced many state-of-the-art results for a variety of machine learning 

tasks such as image classification, speech recognition, machine translation, and image generation. 

When trained on large amounts of data, these many-layer neural networks can learn powerful, 

hierarchical representations and can be highly scalable. At the same time, these networks can also 

experience performance drops due to domain shifts. Thus, much research has gone into adapting such 

networks from large labeled datasets to domains where little (or possibly no) labeled training data are 

available. These single-source and typically homogeneous unsupervised deep domain adaptation 

approaches, which combine the benefit of deep learning with the very practical use of domain 

adaptation to remove the reliance on potentially costly target data labels, will be the focus of this 

survey. A number of surveys have been created on the topic of domain adaptation and more generally 

transfer learning, of which domain adaptation can be viewed as a special case. Previous domain 

adaptation surveys lack depth of coverage and comparison of unsupervised deep domain adaptation 
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approaches. In some cases, prior surveys do not discuss domain mapping, normalization statistic-

based, or ensemble-based methods. In other cases, they do not survey deep learning approaches. Still 

others are application-centric, focusing on a single use case such as machine translation. One earlier 

survey focuses on the multi-source scenario, while we focus on the more prevalent single-source 

scenario. Transfer learning is a broader topic to cover, thus surveys provide minimal coverage and 

comparison of the deep learning methods that have been designed for unsupervised domain adaptation, 

or they focus on tasks such as activity recognition or reinforcement learning. The goal of this survey 

is to discuss, highlight unique components, and compare approaches to single-source homogeneous 

unsupervised deep domain adaptation. We first provide background on where domain adaptation fits 

into the more general problem of transfer learning. We follow this with an overview of generative 

adversarial networks (GANs) to provide background for the increasingly widespread use of adversarial 

techniques in domain adaptation. Next, we investigate the various domain adaptation methods, the 

components of those methods, and the results. Then, we overview domain adaptation theory and 

discuss what we can learn from the theoretical results. Finally, we look at application areas and identify 

future research directions for domain adaptation. 

 

AN OVERVIEW OF DOMAIN ADAPTATION 

(i) Transfer Learning- The focus of this survey is domain adaptation. Because domain adaptation can 

be viewed as a special case of transfer learning, we first review transfer learning to highlight the role 

of domain adaptation within this topic. Transfer learning is defined as the learning scenario where a 

model is trained on a source domain or task and evaluated on a different but related target domain or 

task, where either the tasks or domains (or both) different. For instance, we may wish to learn a model 

on a handwritten digit dataset (e.g., MNIST) with the goal of using it to recognize house numbers (e.g., 

SVHN). Or, we may wish to learn a model on a synthetic, heap-to-generate traffic sign dataset with 

the goal of using it to classify real traffic signs (e.g., GTSRB). In these examples, the source dataset 

used to train the model is related but different from the target dataset used to test the model both are 

digits and signs respectively, but each dataset looks significantly different. When the source and target 

differ but are related, then transfer learning can be applied to obtain higher accuracy on the target data. 

(ii) Generative Adversarial Networks- Many deep domain adaptation methods that we will discuss 

in the next section incorporate adversarial training. We use the term adversarial training broadly to 

refer to any method that utilizes an adversary or an adversarial process during training. Before other 

adversarial methods were developed, the term was narrowly applied to training designed to improve 

the robustness of a model by 

utilizing adversarial examples, e.g., image inputs with small worst-case perturbations that lead to 

misclassification. Subsequently, other techniques have arisen that also utilize an adversary during 

training, including generative-adversarial training of generative adversarial networks (GANs) and 

domain-adversarial training of domain adversarial neural networks (DANN), both of which have been 

used for domain adaptation. To provide background for the domain adaptation methods utilizing these 

techniques, we will first discuss GANs and later when discussing DANN note the differences. 

 
Figure 1- Realistic but entirely synthetic images of human faces generated by a GAN trained 

on the CelebA-HQ dataset 
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METHODOLOGY 

A rising number of novel unsupervised domain adaptation techniques have been put out in recent years, 

with a focus on neural network-based methods. Different research strands have evolved. These include 

focusing on making the model target discriminative by shifting the decision border into areas of lower 

data density, mapping between domains, separating normalization statistics, and aligning the 

distributions of the source and target domains. Furthermore, other people have looked at combining 

these strategies. We will outline each of these classifications along with the most recent techniques 

that fit inside them. As is often investigated, homogeneous domain adaptation that is, adaptation with 

a single source domain and a single destination domain will be the major topic of this survey. Multi-

source domain adaptation is an additional scenario in which there are several source domains but only 

one destination domain. Since Sun et al.'s survey on multi-source domain adaptation, several more 

techniques have been created specifically for this situation. Multi-target domain adaptation is another 

option, however it is much less frequently explored. Similar to this, even if certain heterogeneous 

approaches have been established, we concentrate on homogeneous domain adaptation because of its 

predominance. 

 
 

Figure 2- General network setup for domain adaptation methods learning domain-invariant 

features 

 

(i) Domain-Invariant Feature Learning- Most recent domain adaptation methods align source and 

target domains by creating a domain- invariant feature representation, typically in the form of a feature 

extractor neural network. A feature representation is domain-invariant if the features follow the same 

distribution regardless of whether the input data are from the source or target domain. If a classifier 

can be trained to perform well on the source data using domain-invariant features, then the classifier 

may generalize well to the target domain since the features of the target data match those on which the 

classifier was trained. The general training and testing setup of these methods is illustrated in Figure 

2. Methods differ in how they align the domains. Some minimize divergence, some perform 

reconstruction, and some employ adversarial training. 

(ii) Domain Mapping- Mapping between domains is an option to building a domain-invariant feature 

representation. As will be covered at the conclusion of this section, the mapping is usually generated 

adversarially and at the pixel level (pixel-level adversarial domain adaptation). However, this is not 

always the case. A conditional GAN can be utilised to achieve this mapping. The generator converts a 

source input image to an image that closely mimics the target distribution in order to carry out 

adaptation at the pixel level. As seen in Figure 3, the GAN may, for instance, transform a picture of a 

synthetic car travelling into one that appears realistic. Then, using the known source labels, a classifier 

may be jointly trained with the GAN or trained on the source data mapped to the target domain. We 

will first go over the operation of a conditional GAN and then how domain adaptation can be achieved 

with it. 
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Figure 3- Synthetic vehicle driving image (left) adapted to look realistic (right) 

 

(iii) Normalization Statistics- Most neural networks utilise normalisation layers, such batch norm. 

These offer advantages such as decreasing initialization sensitivity, enabling deeper networks to 

converge, flattening the optimisation landscape and making the gradients more Lipschitz, and 

enabling greater learning rates and therefore quicker training. Every batch norm layer sets a zero 

mean and unit variance for its input. Running averages of the batch norm parameters might be 

utilised during testing. Other alternatives have been created, such as group norm, which eliminates 

the dependency on batch size, and instance norm, which permits usage in recurrent neural networks. 

Nevertheless, do-main adaptation was not considered in the development of any of these 

normalisation strategies. 

(iv) Ensemble Methods- When a base model, such a decision tree or neural network, is used, an 

ensemble of several models can frequently perform better than a single model by collecting votes for 

certain tasks, like classification, or by averaging the outputs of the models (like regression). This is 

due to the fact that various models are more likely to have distinct errors made by each model. 

Ensembles are widespread for some use situations, such as contests, but uncommon for comparing 

models since this performance advantage is correlated with an increase in computing cost due to the 

huge number of models to assess for each ensemble prediction. Several ensemble-based techniques 

have been developed for domain adaptation despite the associated costs; these techniques either use 

the ensemble predictions to direct learning or the ensemble to calculate the prediction confidence for 

target data pseudo-labeling. 

(v) Target Discriminative Methods- The cluster assumption, which states that data points are 

dispersed in distinct clusters and that samples within each cluster share a common label, is one premise 

that has contributed to the success of semi-supervised learning methods. Should this be the case, then 

decision borders ought to be located in areas with low population density (that is, they shouldn't cross 

over areas with a lot of data points). Different domain adaptation techniques have been investigated to 

shift decision boundaries into lower density density areas. Usually, they have had adversarial training. 

Variational adversarial training (VAT), created by Miyato et al, and conditional entropy loss are used 

by Shu et al. in virtual adversarial domain adaptation (VADA) and Kumar et al. in co-regularized 

alignment (Co-DA). They are used in tandem because, in the absence of the entropy loss, VAT may 

lead to overfitting to the unlabeled data points, and in the presence of the entropy loss, VAT may 

prevent the network from becoming locally Lipschitz, which would prevent the decision boundary 

from shifting away from the data points. 

 

THEORY OF UNSUPERVISED DEEP DOMAIN ADAPTATION 

Having surveyed domain adaptation methods, we now address the question of when adaptation may 

be beneficial. Ben-David et al. develop a theory answering this in terms of an ideal predictor on both 

domains, Zhao et al. further this theory by removing the dependence on a joint ideal predictor while 

focusing on domain-invariant feature learning methods, and Le et al.  develop theory looking beyond 

domain-invariant methods. These theoretical results can help answer two questions: (1) when will a 

classifier (or other predictor) trained on the source data per- form well on the target data and (2) given 
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a small number of labeled target examples, how can they best be used during training to minimize 

target test error? Answering the first question, labeled source data and unlabeled target data are both 

required (unsupervised). Answering the second question, additionally some labeled target data are 

required (semi-supervised). We will first review the theoretical bounds followed by a discussion of 

what insights these bounds provide into answering the above two questions. Ben-David et al.  also 

address the case of multiple source domains, as do Mansour et al. In this article, we have focused on 

the cases containing only one source and one target (as is common in the methods we survey). 

(i) Unsupervised- shared Hypothesis Space. Ben-David et al. propose setting a bound on the target 

error based on the source error and the divergence between the source and target domains. The 

empirical source error is easy to obtain by first training and then testing a classifier. However, the 

divergence between the domains cannot be directly obtained with standard methods like Kullback-

Leibler divergence due to only having a finite number of samples from the domains and not assuming 

any particular distribution. Thus, an alternative is to measure it using a classifier induced divergence 

called H ΔH -divergence. Estimates of this divergence with finite samples converges to the real H ΔH 

-divergence. This divergence can be estimated by measuring the error when getting a classifier to 

discriminate between the unlabeled source and target exam- 

ples; though, it is often intractable to find the theoretically required divergence upper bound. 

(ii) Semi-Supervised- In the semi-supervised case, a linear combination of the source and target errors 

is computed,called the α-error. A bound can be calculated on the true α-error based on the empirical 

α-error. Finding the minimum α-error depends on the empirical α-error, the divergence between source 

and target, and the number of labeled source and target examples. Experimentation can be used to 

empirically determine the values of α that will perform well. Ben-David et al. also demonstrate the 

process on sentiment classification, illustrating that the optimum uses non-trivial values. 

 

CONCLUSION 

Deep neural networks are widely used for supervised learning; nevertheless, their training requires 

huge labelled datasets. Deep networks may be adapted to potentially smaller datasets with no goal 

labels by using unsupervised domain adaptation. To achieve this, a number of approach categories 

have been created, including ensemble-based, normalisation statistics-based, domain mapping, and 

domain-invariant feature learning techniques. As we have shown, there are certain distinctive and 

common aspects among these different strategies. Theoretical findings also provide some light on 

actual discoveries. Some of the approaches seem highly promising, but more work is needed for unique 

method combinations, enhanced bi-directional adaptation, direct comparisons, and usage with new 

datasets and applications. 
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