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ABSTRACT:

Krishi Samruddhi is an innovative, loT-based smart agriculture system designed to enhance crop
productivity through real-time environmental monitoring and intelligent decision-making. This
project integrates ESP32 microcontrollers and LoRa RA-02 SX1278 modules to create a low-power,
long-range wireless communication network that transmits data without relying on the internet.
Sensors including DHT22, soil moisture probes, and an NPK sensor gather vital agricultural
parameters such as temperature, humidity, soil moisture, and nutrient levels. The collected data is
stored in Firebase and used to power a crop recommendation system based on a Random Forest
machine learning model . Additionally, a YOLOv8-based deep learning model is implemented for
crop disease detection, particularly focused on rice crops. The combination of IoT, machine learning,
and computer vision in Krishi Samruddhi supports precision farming and data-driven agriculture,
aiming to empower farmers with actionable insights for better crop management.

Keywords: Intelligent Farming, Internet of Things, ESP32, LoRa Technology, Crop Suggestion,
Random Forest Algorithm, NPK Sensor, YOLOv8 for Disease Recognition, Crop Health
Monitoring, Firebase.

INTRODUCTION:

Agriculture still forms the backbones of several economies, though farmers themselves go through
tough times because of unfavourable weather conditions, inefficient use of resources, and
unavailability of timely information. Krishi Samruddhi solves these problems by launching an
intelligent, lIoT-based agricultural tracking and decision support system that enhances farmers'
capacity with real-time information. The project employs ESP32 microcontrollers in conjunction
with LoRa RA-02 SX1278 modules to create a low-cost, long-range, and low-power communication
network that does not rely on the internet. Through the inclusion of sensors like DHT22 for
temperature and humidity, soil moisture sensors, and an NPK sensor for nutrient detection, the
system gathers vital information from the farm environment. This information is then stored within
Firebase and is processed by using a machine learning-based crop recommending system to help
farmers select appropriate crops according to existing soil and weather conditions. In addition to this,
there is a computer vision model with YOLOvVS for disease detection within crops—mainly rice—
with the help of image processing. Krishi Samruddhi therefore is a complete solution in precision
farming utilizing data science, IoT, and Al to increase agricultural productivity as well as make it
more sustainable.

LITERATURE :

The convergence of IoT and machine learning in agriculture has made significant progress in recent
years due to the demands of precision farming and sustainable production of crops. A number of
studies have been made in this field, and they have covered different aspects that include wireless
communication technologies to predictive analytics.
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LoRa technology, being long-range and low-power, is a strong candidate for distant agricultural use.
Dobra et al. (2020) performed LoRa propagation tests in urban and indoor settings to measure signal
strength and coverage. The results emphasize the reliability and effectiveness of LoRa even in poor
conditions like heavy office buildings, validating its suitability in agricultural applications where
internet coverage is sparse [1].

In terms of predictive analytics, Dey et al. (2024) designed a machine learning-driven crop
recommendation system for Indian regions. Incorporating variables like NPK values, soil pH, and
climatic parameters, their model provides intelligent recommendations based on regional soil and
weather patterns. Their study justifies the ability of machine learning algorithms to make optimal
crop selection decisions, particularly when there is rich environmental data available [2].

Similarly, Elbasi et al. (2023) compared various machine learning algorithms for crop prediction and
determined that ensemble models tended to perform better than conventional classifiers. Their
research placed great emphasis on the quality of the dataset and feature selection in obtaining good
prediction accuracy. The researchers also asserted that models such as Random Forest offered more
robustness and explainability in agricultural applications [4].

Along with prediction and recommendation systems, loT-based smart agriculture platforms have also
been suggested to automate data retrieval and decision-making operations. Mat et al. (2018) used an
IoT-based architecture to track soil and environmental conditions in real time. Various sensors were
used by their system to gather data and a central interface was given to farmers to enable informed
decision-making. The research highlighted the ways in which IoT has the potential to drastically cut
down on labor, save resources, and enhance the yield of crops through timely intervention [7].

These research works collectively show the potential of merging IoT with machine learning to
revolutionize conventional agricultural practices. They form a robust basis for the creation of end-to-
end systems such as Krishi Samruddhi, which utilizes LoRa communication, real-time sensing of the
environment, and smart analytics to aid farmers with meaningful insights.

METHODOLOGY:

Krishi Samruddhi uses a multi-layered approach incorporating IoT, machine learning, and computer
vision to develop a smart agriculture decision-support system. It is developed on ESP32
microcontrollers interfaced with LoRa RA-02 SX1278 modules, facilitating long-range low-power
wireless communication for real-time data transfer without internet connectivity. At the sensing
layer, the system gathers critical environmental and soil data through sensors—temperature and
humidity through DHT22, capacitive soil water sensors, and an NPK sensor to assess the level of
nutrients in soil. The data gathered is transmitted through LoRa to a receiver module and gets stored
in Firebase for processing and visualization.

For crop recommendation, a machine learning model is trained on a custom dataset with NPK
values, temperature, humidity, and soil moisture information. Different classification algorithms—
Random Forest, Support Vector Machine, K-Nearest Neighbours, and Logistic Regression—are
tested, and Random Forest is chosen for its better accuracy and resilience. The model suggests
appropriate crops based on the prevailing environmental and soil conditions.

In the soil moisture monitoring aspect, the sensors continuously provide readings which are utilized
to monitor the moisture content of the field. Through this real-time information, prompt irrigation
decisions are made, thus conserving water and avoiding over- and under-watering. Thresholds of
moisture are defined in the system to notify users or initiate responses when moisture values dip
below acceptable levels.

For disease detection of rice leaf, a deep learning technique is used based on the YOLOVS object
detection model (You Only Look Once, version 8). A training set of images of rice leaves—the
images being classified according to widespread diseases—is adopted to train the model. Pictures of
rice plants taken via a camera module are inspected by the model in order to detect and identify
observable signs of disease. The system can accurately identify diseased plants, enabling early
intervention and targeted pesticide application, thereby reducing crop loss.

UGC CARE Group-1 56



OF INDge
= 7,

2
¢
R

Industrial Engineering Journal
ISSN: 0970-2555
Volume : 54, Issue 5, No.1, May : 2025

2
A

STIT
LU
7,

Nrgnat

%,

This layered and modular methodology ensures that Krishi Samruddhi provides comprehensive
support to farmers—from choosing the right crops to maintaining optimal field conditions and
managing crop health efficiently.

Rice Leaf Disease Capture the image Object Detection Result
Detection and upload Model
— —
Crop . .
Recommendation Soil NPK Sensor Machin | aming Prediction
s Model

Figure 1 Block Diagram
—

—
CIRCUIT DIAGRAM

Figure 2 Sender Circuit Diagram

The ESP32 microcontroller is used as the master controller, gathering information from DHT22,
Ground water content, and NPK sensors and sending it through the Lora RA-02 module. The SPI
protocol is interfaced with the Lora module as follows: COPI (MOSI) to GP1023, CIPO (MISO),
and GPIO19, SCK to GPIO18, CS to GPIOS5, RST to GPIO2 and DIO0. The DHT22 is connected to
the GPIO15 at its normal living temperature and humidity levels. Water content sensors are
connected with GP1IO32 and GPIO33 as Analog inputs to measure the dampness of the soil and sends
to ESP32. For soil nutrient testing, the NPK sensor Modbus RTU is utilized and communicated on
ESP32 using UART?2 through PINS GPIO16 (RX) and GPIO17 (TX).
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Figure 3 Receiver Circuit Diagram

In the master controller, data via the LORA RA-02 module and delivery data from the online
database are fed remotely to the sewer module. The 433 MHz LORA module provides SPI (serial
peripheral interface) with the capability of speaking to the ESP32 at long ranges. The 3.3 V service
pen is from ESP32 to the LORA module to VCC for stable performance, where the GND pins of
both modules are connected to the closure of the circuit. The 3.3 V logic level of the LORA RA-02
module makes exact control of energy as significant. In essence, this means that it is fully compatible
with ESP32. For data transmission, LORA's MOSI pencil (master out slave-in) is connected from the
ESP32 to the GPIO23 so that the ESP32 can provide instructions and data to the form. PIN MISO
(Master in Slave Out) is connected to GPIO19 and returns the data received by the LORA module to
the EP32. The SCK PIN series is connected to the GPIO18 and synchronizes the ESP32 and LORA
clock during SPI communication. The CS pin is also connected to the GPIOS, which uses the ESP32
to select or disable communication with the LORA module.

PROPOSED MODEL AND RESEARCH:

N P 4 temperature humidity ph rainfall tabel
20 42 43 20.87974371 82.00274423 6.502985292 202.9355362 rice
85 58 a1 21.77046169 80.31264408 7.038096361 226 6555374 rice
60 55 44 23.00445915 82.3207629 7.840207144 263.9642476 rice
74 35 40 26.49109635 80.15836264 6.980400905 242.8640342 rice
78 42 42 20.13017482 81.60487287 7.628472891 262.7173405 rice
69 37 42 23.05804872 83.37011772 7.073453503 251.0549298 rice
69 55 33 22.70833798 52.63941394 5.70080568 271.3248604 rice
94 53 40 20.27774362 82.89408619 5.718627178 241.9741949 rice
89 54 38 24.51588066 83.5352163 6.685346424 230.4462359 rice
68 58 38 23.22397336 83.03322691 6.336253525 221.2021958 rice
91 53 40 26.52723513 81.41753846 5.386167788 2646148697 rice
30 48 42 23.97898217 81.45061596 7.50283396 250.0832336 rice

' 78 58 44 26.80079604 80.88884822 5.108681786 2844384567 rice
93 56 36 24.01497622 8205657182 698435366 185.277338% rice
94 50 37 2566585205 80.66365045 6.84801983 208.5869708 rice
60 48 39 24.28209415 80.30025587 7.042299069 231.0863347 rice
85 38 41 21.58711777 827883708 6.249050656 276.6552458 rice
o1 3% a9 23.79391957 80.41817957 6.970859754 206.2611855 rice
7 38 36 21.8652524 80.1923008 5.953933276 224.5550169 rice
38 35 40 23.57943626 83.58760316 5.85393208 291.2986618 rice
89 45 38 21.32504158 80.47476396 6.442475375 185.4974732 rice
78 40 43 25.15745531 83.11713476 5.070175667 231.3843163 rice
67 59 41 21.94766735 80.97384195 6.012632591 213.3560921 rice
83 41 43 21.0525355 82.67839517 6.254028451 233.1075816 rice
98 47 37 2348381244 81.33265073 7.375482851 224 0581164 rice
66 53 41 25.0756354 80.52359148 7.778915154 257.0038885 rice
97 59 43 26.35927159 84.04403589 6.286500176 271.3586137 rice

Figure 4 Kaggle Dataset
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PROPOSED MODEL :

A bagging approach is used with machine learning model RF. The model is trained on a Kaggle
dataset with NPK values, temperature, humidity, pH, and rainfall information. The accuracy level of
these models is compared, and the most accurate model is selected for crop recommendation. The RF
calculation gives the highest level of accuracy in classification.

RANDOM FOREST MODEL ACCURACY :

rModel Accuracy: 99.32%

Classification Report:
precision recall fi-score support

= 28 = o <
banana 1.ee 1.ee 1.ee 21
blackgram 1.ee 1.ee 1.ee 2e
chickpea 1.ee 1.ee 1.ee 2s
coconut 1.ee 1.ee 1.ee 27
coffee 1.ee 1.ee 1.ee 17
cotton 1.ee 1.ee 1.ee 17
grapes 1.ee 1.ee 1.ee 1a

Sute e.o2 1.ee e.os 23
kidneybeans 1.ee 1.ee 1.ee 2e
lentil e.o2 1.ee e.os 11
maize 1.0 1.ee 1.ee 21

mango 1.ee 1.ee 1.ee =y
mothbeans 1.ee e.os e.os 2a
mungbean 1.ee 1.ee 1.ee 1o
muskmelon 1.ee 1.ee 1.ee 17
orange 1.ee 1.ee 1.ee 1a
papaya 1.ee 1.ee 1.ee 23
pigeonpeas 1.ee 1.ee 1.ee 23
pomegranate 1.ee 1.ee 1.ee 23
rice 1.ee e.s9o e.oa 1o
atermelon 1.ee 1.ee 1.ee ET=
accuracy e.o9o azse
cro aveg -o9o o9 e.o9 aze
weighted ave e.o9o e.o9 e.o9 aae

Figure 5 Model Accuracy

CONFUSION MATRIX :
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Figure 6 Confusion Matrix
PREDICATION RESULTS :

Enter values for prediction:
Enter Nitrogen : 91

Enter Phosphorous: 56

Enter Potassium: 37

Enter Temperature: 23.4
Enter Humidity: 8@.5
Predicted Crop: rice

Figure 7 Prediction Results

RICE LEAF DISEASE DETECTION :
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v~ Rice Crop Disease Detection using YOLOv8

Upload an image of a plant leaf, and the model will detect diseases.

output 1

ot it

Figure 8 Rice leaf Disease Detection

CONCLUSION :

The Crop Suggestion System suggests crops depending upon soil nutrients, temperature, humidity,
and the moisture level. Long-range transmission enables the data collection of IoT devices and
Firebase storage as a cloud service. Up to 10 kilometers of distance is covered while broadcasting
data under line-of-sight conditions. The system experimentally examines multiple machine learning
approaches, and RF provides maximum accuracy of 99.32%.
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