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Abstract: One important area of research is deepfake 

audio detection, which separates real human voices 

from speech that has been modified or produced 

artificially.  Generative models like WaveNet, Voice 

Conversion, and Text-to-Speech (TTS) synthesis 

have greatly enhanced the quality and realism of 

deepfake audio due to the quick development of 

artificial intelligence. This has raised significant 

ethical and security issues in a number of 

domains,including media, cybersecurity, and forensic 

investigations. 

In order to analyze Mel-Spectrograms and Mel-

Frequency Cepstral Coefficients (MFCCs), this study 

suggests a deepfake audio detection framework that 

makes use of Convolutional Neural Networks (CNN) 

and Bidirectional Long Short-Term Memory 

(BiLSTM) networks.  These attributes enable the 

model to accurately discriminate between synthetic 

and real audio by capturing the spectral and temporal 

aspects of speech. 

A balanced training environment is ensured by the 

94,734 audio samples in the dataset utilized in this 

study, which is evenly distributed between actual and 

false recordings. To improve model performance, 

preprocessing methods such time-frequency domain 

analysis, feature scaling, and noise removal are used.  

Using demanding experimental settings, the 

suggested CNN-BiLSTM architecture is trained and 

assessed, obtaining 98% accuracy and proving its 

resilience in identifying deepfake speech. 

In order to prevent audio forgeries and improve the 

security of voice-based authentication systems, the 

results of this study emphasise the significance of 

hybrid deep learning architectures. In order to 

increase the scalability and versatility of deepfake 

detection models, future research will investigate the 

merging of self-supervised learning strategies with 

real-time detection methods. 

Index terms -Deepfake Audio, CNN, BiLSTM, Mel-

Spectrogram, MFCC, Audio Forensics, Voice 

Synthesis, Speech Authentication, Machine Learning, 

Temporal Dependencies, Deepfake Detection. 

1. INTRODUCTION 

Deepfake technology's rapid advancement has raised 

serious concerns regarding disinformation, privacy, 

and digital security. Specifically, deepfake audio 

employs artificial intelligence to generate speech that 

closely mimics human voices, making it increasingly 

difficult to distinguish between authentic and 

manipulated recordings. While this technology has 

promising applications in virtual assistants, 

entertainment, and assistive communication for 

individuals with speech impairments, it also poses 

substantial risks. These risks include identity theft, 

voice impersonation, disinformation campaigns, and 

the potential exploitation of voice authentication 

systems through social engineering, phishing, and 

other malicious activities [1], [7], [14]. 
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As sophisticated text-to-speech (TTS) and voice 

conversion methods powered by deep learning 

become more prevalent, robust detection mechanisms 

are urgently needed to identify and mitigate 

manipulated speech [8], [12]. This research aims to 

develop an advanced deepfake audio detection 

system using a hybrid deep learning approach that 

combines Convolutional Neural Networks (CNNs) 

and Bidirectional Long Short-Term Memory 

(BiLSTMs) networks. CNNs efficiently extract 

spatial and frequency-based features from audio 

spectrogram representations, capturing intricate 

patterns and artifacts indicative of synthetic speech 

[8], [9]. Meanwhile, BiLSTMs enhance the system’s 

ability to recognize subtle temporal relationships and 

variations in speech signals, enabling the 

differentiation between authentic and fraudulent 

audio samples [6], [10]. 

Our study contributes to the growing field of audio 

forensics by presenting a data-driven machine 

learning-based approach to deepfake audio detection. 

By analyzing 94,734 real and synthetic audio 

samples, we demonstrate the effectiveness of our 

model in accurately identifying manipulated speech 

[2], [11]. The proposed approach not only enhances 

the reliability of deepfake detection but also lays the 

foundation for future advancements in automated 

voice verification systems. To further improve model 

resilience against emerging deepfake generation 

techniques, future research will explore the 

integration of self-supervised learning, adversarial 

training, and real-time detection methods [3], [13], 

[16]. 

 

Fig 1: Block Diagram of Model 

2. LITERATURE SURVEY 

With the increasing threat of AI-generated synthetic 

speech, deepfake audio detection has emerged as a 

critical area in biometric security, media integrity, 

and forensic analysis. A wide range of studies have 

explored various machine learning and deep learning 

approaches to tackle this challenge effectively. One 

approach leverages Mel-Frequency Cepstral 

Coefficients (MFCCs) and spectral features to train 

machine learning models like Support Vector 

Machines (SVMs) and Gradient Boosting, which 

perform particularly well on short audio samples. For 

longer clips, a VGG-16-based deep learning model 

achieved a high accuracy of 93%. This study also 

demonstrated the importance of data augmentation 

techniques such as pitch shifting and time stretching 

in improving model robustness and generalization, 

pointing towards the need for real-time, scalable 

detection systems as well as future exploration in 

self-supervised learning and edge-device deployment 

[1]. 

Another study focused on spoofing attacks that 

threaten voice-based authentication systems in 

sectors like banking and telecommunications. It 

introduced a deep learning framework trained on over 

419,000 samples to classify various spoofing types, 

including voice conversion, text-to-speech, and 

replay attacks. Acoustic features like MFCCs, 

spectral centroid, and chroma features were extracted 

to boost performance. Among several models tested, 

Convolutional Neural Networks (CNNs) showed the 

best results, with a notably low false positive rate 

(FPR) of just 0.003, outperforming WaveNet, LSTM, 

and GRU architectures. Real-time audio processing 

was also evaluated, confirming the practical 

feasibility of deploying such systems in live 

environments [2]. 

A hybrid CNN-LSTM architecture has also shown 

promising outcomes in detecting deepfake audio by 

combining spatial and temporal analysis. CNNs 

extract high-level spatial features from MFCCs, 

while LSTMs learn sequential dependencies, making 

the system more effective at identifying subtle 

manipulations in audio signals. Evaluated on a 

balanced dataset of real and fake samples, the model 

achieved strong performance in terms of accuracy, 

precision, recall, and F1-score, surpassing traditional 

models. This hybrid approach is particularly relevant 

for enhancing voice authentication and mitigating 

audio-based deception, with future work focusing on 

optimizing for real-time systems and resource-

constrained environments [3]. 

However, as these models become more advanced, 

they also become more susceptible to adversarial 
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attacks. One paper highlighted the vulnerability of 

high-performing classifiers such as Deep4SNet—

which initially achieved a detection accuracy of 

98.5%—to adversarial inputs generated via 

generative adversarial networks (GANs). Under gray-

box attacks starting from random noise, the model's 

accuracy dropped dramatically to just 0.08%. To 

address this, researchers proposed a lightweight and 

generalizable defense mechanism that can be 

integrated into existing models to resist such attacks, 

emphasizing the urgent need for robust, secure 

classifiers in biometric systems [4]. 

Further reinforcing the value of deep learning, 

another study examined Deep Residual Neural 

Networks (ResNets) for audio spoofing detection. It 

contrasted traditional handcrafted-feature-based 

models with deep learning methods, concluding that 

ResNet architectures offer superior performance due 

to their ability to extract deep representations and use 

residual learning. The study reported significantly 

lower Equal Error Rates (EERs) and better 

performance in Tandem Detection Cost Function (t-

DCF) metrics compared to classical methods such as 

SVMs and Decision Trees. These results validate the 

effectiveness of ResNets in building scalable, 

accurate, and robust anti-spoofing systems capable of 

adapting to evolving attack methods [5]. 

3. METHODOLOGY 

3.1 Proposed Work 

To identify audio deepfakes, a CNN-BiLSTM model 

is used. To improve important frequency 

components, the input audio signals are preprocessed.  

The deep learning model uses the retrieved MFCCs 

and Mel spectrograms as input. Whereas the BiLSTM 

layers record temporal dependence, the CNN layers 

extract spatial frequency characteristics.  A fully 

linked layer with a sigmoid activation function is 

used for the final classification, which separates 

authentic audio from deepfake. 

By automating deepfake identification, this deep 

learning-based method substitutes a highly accurate 

and effective model for manual forensic 

investigation. 

3.2 System Architecture 

The proposed system architecture for deepfake audio 

detection integrates a hybrid CNN-BiLSTM model 

designed to extract both spatial and temporal features 

from audio signals. Initially, raw audio files undergo 

preprocessing steps such as noise reduction, silence 

removal, and feature normalization to ensure data 

quality and consistency. Key features, including Mel-

Spectrograms and MFCCs, are extracted from the 

preprocessed audio to capture spectral and phonetic 

characteristics. These features are resized into fixed 

dimensions to standardize inputs for the deep 

learning model. 

The CNN component processes the extracted features 

by applying convolutional layers that capture spatial 

frequency patterns indicative of synthetic audio 

artifacts. The output of the CNN is fed into BiLSTM 

layers, which analyze temporal dependencies and 

subtle variations within the audio signals. Finally, the 

combined features are passed through a fully 

connected layer with a sigmoid activation function, 

classifying the audio as either real or fake. This 

architecture ensures precise and efficient detection of 

deepfake audio, leveraging both spectral and 

temporal feature analysis for high performance. 

 

Fig 2: Flowchart of Audio Deepfake Detection 

Process 

3.3 Modules 

3.3.1 Data Collection and Preparation 

 Collect a balanced dataset of real and fake 

audio samples. 
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 Organize data into training, validation, and 

test sets. 

 Ensure metadata includes sample rates, 

speaker IDs, and file formats. 

3.3.2 Data Preprocessing 

 Load and resample audio files to a fixed 

sample rate. 

 Apply silence removal and noise reduction 

techniques. 

 Extract features like Mel-Spectrograms, 

MFCCs, and Chroma features. 

 Normalize and resize features for 

uniformity. 

3.3.3 Data Augmentation 

 Perform augmentation techniques such as 

additive Gaussian noise, time stretching, and 

pitch shifting. 

 Balance the dataset by augmenting 

underrepresented classes. 

 

3.3.4 Feature Extraction 

 Extract Mel-Spectrograms for time-

frequency analysis. 

 Compute MFCCs to capture phonetic and 

speech characteristics. 

 Process features into fixed dimensions 

suitable for input to the model. 

3.3.5 Model Design and Training 

 Implement the CNN layers for spatial 

feature extraction. 

 Add BiLSTM layers to capture temporal 

dependencies in audio. 

 Train the hybrid CNN-BiLSTM model using 

the training dataset. 

 Validate the model with a separate 

validation set to fine-tune parameters. 

3.3.6 Model Evaluation 

 Test the trained model on the test dataset to 

assess performance. 

 Measure metrics like accuracy, precision, 

recall, and F1-score. 

 Analyze model robustness against 

adversarial or novel deepfake techniques. 

 

3.3.7 Deployment and Real-Time Detection 

 Deploy the trained model for real-time 

deepfake detection. 

 Integrate with applications requiring audio 

verification or voice authentication. 

 Optimize the system for scalability and low-

latency detection. 

 

3.4 Algorithms used 

The following algorithms are used for detection of 

fake audio in conversations. 

3.4.1 Convolutional Neural Networks 

The CNN is employed forfeature extraction from 

Mel-Spectrograms, which represent the time-

frequency distribution of audio signals. The Key 

Components of this algorithm as follows. 

Depth wise Separable Convolutions: Efficiently 

extract spatial frequency patterns while reducing 

computational complexity. 

ReLU Activation: Introduces non-linearity to enable 

the model to learn complex feature mappings. 

Batch Normalization: Normalizes feature 

distributions to stabilize training and improve 

convergence. 

Squeeze-and-Excitation (SE) Layer: Dynamically 

recalibrates channel-wise features by learning their 

relative importance. 

3.4.2 Bidirectional Long Short-Term Memory 

(BiLSTM) 

The BiLSTM models temporal dependencies and 

sequential patterns in MFCC features, which capture 

phonetic and tonal information in speech. The Key 

Components of this algorithm as follows. 
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Bidirectional Processing: Allows the network to 

analyze audio data in both forward and backward 

time directions, enhancing context understanding. 

Self-Attention Mechanism: Highlights key temporal 

regions in the audio by assigning higher weights to 

important features. 

Residual Connections: Preserves original feature 

information and ensures a smoother flow of gradients 

during backpropagation. 

Dropout and Recurrent Dropout: Regularizes the 

model to prevent overfitting by randomly 

deactivating neurons. 

3.4.3 Feature Fusion and Classification 

 

This mechanism has the following steps for detection 

of fake audio in conversations. 

Feature Concatenation: Combines spatial features 

from CNN with temporal features from BiLSTM to 

leverage both frequency and sequential information. 

Fully Connected Layers: Dense layers refine the 

fused features, applying non-linear transformations 

and regularization (Dropout) to prevent overfitting. 

Sigmoid Output Layer: Outputs a probability score 

to classify audio as real (1) or fake (0), enabling 

binary classification. 

 

 

4. EXPERIMENTAL RESULTS 

The Performance of our proposed system is going to 

measure using the following measures. 

Accuracy: How well a test can differentiate between 

healthy and sick individuals is a good indicator of its 

reliability. Compare the number of true positives and 

negatives to get the reliability of the test. Following 

mathematical: 

Accuracy = TP + TN / (TP + TN + FP + FN) 

         
(     )

 
 

Test Accuracy: 0.9895 

Precision: Precision evaluates the fraction of 

correctly classified instances or samples among the 

ones classified as positives. Thus, the formula to 

calculate the precision is given by: 

Precision = True positives/ (True positives + False 

positives) = TP/ (TP + FP) 

Recall: Recall is a metric in machine learning that 

measures the ability of a model to identify all 

relevant instances of a particular class. It is the ratio 

of correctly predicted positive observations to the 

total actual positives, providing insights into a 

model's completeness in capturing instances of a 

given class. 

F1-Score: A high F1 score indicates that a machine 

learning model is accurate. Improving model 

accuracy by integrating recall and precision. How 

often a model gets a dataset prediction right is 

measured by the accuracy statistic. 

The following table specifies the various 

Performance measure values for the given samples. 

Table 1: Performance measure values 

Class Precision Recall 
F1-

Score 
Support 

Fake 0.99 0.99 0.99 47,367 

Real 0.99 0.99 0.99 47,367 

Overall 0.99 0.99 0.99 94,734 

The following figures 3, 4 and 5 describes the 

uploading of test audio, Predicted results and 

Spectrum results respectively. 
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Fig 3: Upload audio file 

 

Fig 4: Predicted MFCC results 

 

Fig 5: Predicted Spectrum results 

5. CONCLUSION 

In this research, we used a CNN-BiLSTM 

architecture to create a sophisticated deepfake audio 

detection system.  Mel spectrograms and MFCCs are 

extracted by our model, which successfully captures 

the temporal and spatial characteristics of audio 

inputs.  The model's capacity to discriminate between 

synthetic and real speech is improved by the 

combination of CNN for local feature extraction and 

BiLSTM for sequential learning.  Our model achieves 

an accuracy of 94% with stringent preprocessing 

procedures, such as data augmentation, noise 

reduction, and silence cutting, making it a dependable 

option for automatic deepfake identification. 

6. FUTURE SCOPE 

Even though our model achieves great accuracy, it 

may still be improved to make it more applicable in 

the actual world: 

Real-time Implementation: To enable real-time 

deepfake detection in live audio streams, the model is 

optimized for low-latency processing. 

Multi-Language Support: For wider application, the 

dataset will be expanded to contain deepfake voice in 

different languages. 

Enhancing the model to identify deepfake audio 

produced by more complex AI models, such 

diffusion-based and self-supervised learning 

techniques, would increase its robustness against 

advanced deepfakes. 

Forensic Tool Integration: Using the model with 

digital forensic software to help with automated 

deepfake identification for media verification and law 

enforcement. 

Interpretability and Explainability: Creating strategies 

for explainable AI that shed light on the model's 

categorizationjudgments. 
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