

AN EMPIRICAL STUDY ON IMPACT OF ETHONAL BLENDED PETROL ON VEHICLE PERFORMANCE, EFFICIENCY AND MAINTENANCE WITH REFERENCE TO TWO-WHEELER USERS IN INDIA

DR. M. Ravichandran, Asst. Professor (SR. GR.), Department of Management Studies, UCE Anna University, Tiruchirappalli – 620 024. Mobile: 9942274409, e-mail id: <u>dr.mraviautmba@gmail.com</u>
 S. Praburam, MBA Final Year, Department of Management Studies, UCE - Anna University, Tiruchirappalli – 620024. Mobile: 8072119728, e-mail id: praburam1st@gmail.com

ABSTRACT:

The introduction of ethanol-blended petrol in India is a strategic move aimed at enhancing energy security and reducing carbon emissions. However, its impact on vehicle performance, fuel efficiency, and maintenance costs has been a subject of debate among consumers and the automobile industry. This study evaluates the effects of ethanol-blended fuels (E10 and E20) on different vehicle categories, analyzing their influence on fuel economy, engine performance, and long-term maintenance costs.Surveys were conducted among vehicle owners, automobile engineers, and fuel station operators to gauge their experiences. Additionally, empirical tests were carried out to compare the performance of vehicles using E10 and E20 fuels. The findings suggest that ethanol-blended petrol slightly reduces fuel efficiency due to its lower calorific value compared to conventional petrol. Moreover, ethanol's hygroscopic nature leads to increased maintenance costs due to potential corrosion in fuel system components. Despite these concerns, ethanol-blended fuels contribute to lower greenhouse gas emissions, aligning with India's sustainable energy goals. The study offers policy recommendations for enhancing fuel compatibility and consumer awareness, ensuring a smooth transition towards higher ethanol blends.

Keywords: Ethanol - blended petrol, fuel efficiency, vehicle performance, maintenance costs, biofuel adoption, sustainability, automobile industry, India.

INTRODUCTION:

GENERAL BACKGROUND:

With the increasing global awareness of climate change, pollution, and the finite nature of fossil fuels, the shift toward renewable energy sources has become a priority. Among these, ethanol has emerged as a widely adopted biofuel due to its versatility, cleaner combustion, and renewable origins. Ethanol, also known as ethyl alcohol (C₂H₅OH), is a volatile, flammable, colourless liquid that is biologically derived—primarily through the fermentation of sugars from crops such as sugarcane, maize, and other biomass sources (Demirbas, 2007). The transportation sector is one of the largest contributors to greenhouse gas emissions globally. In response, many countries are promoting ethanol-blended fuels, which not only reduce harmful emissions but also improve energy security. Ethanol's ability to be blended with gasoline at various concentrations (e.g., E10, E20, E85) has enabled its integration into existing fuel infrastructures with minimal modification (U.S. Department of Energy, 2020). This makes ethanol a practical bridge fuel during the global transition toward more sustainable energy sources. In India, where fossil fuel imports significantly strain the economy, the use of ethanol as a biofuel is receiving strong governmental backing. The Ethanol Blended Petrol (EBP) program, launched by the Government of India, aims to blend up to 20% ethanol with petrol by 2025, reducing import bills and supporting the domestic agricultural economy (Ministry of Petroleum & Natural Gas, 2021). This initiative reflects not only energy policy transformation but also highlights the role of ethanol in environmental conservation and rural development.

ETHANOL PRODUCTION AND TYPES :

Ethanol can be produced through various methods, with the most common involving the fermentation of sugars using yeast or bacteria. Depending on the raw material used, ethanol is

classified as either first-generation or second-generation biofuel. First-generation ethanol is produced from edible crops such as corn, wheat, and sugarcane. While technologically mature and commercially viable, this method has raised concerns over food security and land use (Balat et al., 2008).Second-generation ethanol, on the other hand, is derived from lignocellulosic biomass—non-food sources such as agricultural residues, forestry waste, and municipal solid waste. This approach not only mitigates the food vs. fuel debate but also utilizes waste materials that would otherwise contribute to pollution (Zabed et al., 2017). Advanced enzymatic hydrolysis and pre-treatment methods are employed to convert cellulose and hemicellulose into fermentable sugars. Despite higher production costs and technological complexities, second-generation ethanol offers greater sustainability.Recent advancements in biotechnology have led to the development of genetically modified microorganisms capable of fermenting both hexose and pentose sugars, improving yields and efficiency. Moreover, integrated biorefineries are being developed to co-produce ethanol and value-added products like bioplastics, biochemicals, and electricity, enhancing the overall economics of bioethanol production (Naik et al., 2010).

ENVIRONMENTAL SIGNIFICANCE:

Ethanol has substantial environmental benefits compared to fossil fuels. When combusted, ethanol produces lower levels of carbon monoxide, hydrocarbons, and particulate matter. More importantly, ethanol is considered carbon neutral, as the CO_2 released during combustion is offset by the CO_2 absorbed by the crops during growth (Farrell et al., 2006). This makes ethanol a valuable tool in reducing the carbon footprint of the transport sector.

Ethanol's high oxygen content improves the combustion efficiency of engines, resulting in reduced emissions of pollutants such as nitrogen oxides and sulfur oxides. This cleaner combustion is particularly beneficial for urban air quality, which is often severely compromised due to vehicular pollution (Hoekman et al., 2012). Several life cycle assessment (LCA) studies have shown that ethanol, particularly from cellulosic sources, can reduce greenhouse gas emissions by up to 86% compared to gasoline (U.S. EPA, 2010).

However, ethanol production is not without environmental concerns. Intensive farming for biofuel feedstocks may lead to soil degradation, excessive water use, and the loss of biodiversity. In some cases, land-use changes—especially deforestation for crop cultivation—can release large amounts of carbon into the atmosphere, undermining the environmental benefits of bioethanol (Searchinger et al., 2008). Therefore, sustainable practices, regulatory oversight, and advanced biofuel technologies are essential to maximize benefits while minimizing ecological harm.

ECONOMIC AND SOCIAL IMPACT:

Economically, ethanol production provides a significant boost to rural and agricultural economies. In countries like Brazil, sugarcane-based ethanol has created thousands of jobs in agriculture, processing, and logistics (Goldemberg et al., 2004). Similarly, India's sugar and grain-producing states have experienced increased income opportunities due to the growing demand for ethanol feedstocks. The ethanol industry contributes to energy diversification, reducing reliance on imported crude oil and enhancing national energy security. Ethanol blending programs also help stabilize global oil prices by reducing overall demand. In India, where fuel imports account for a substantial share of the trade deficit, expanding domestic ethanol production offers a strategic economic advantage (NITI Aayog, 2021). Socially, ethanol programs promote rural development by offering alternative income sources to farmers, encouraging investment in rural infrastructure, and stimulating local economies. Government support, in the form of subsidies and guaranteed procurement, ensures market stability and encourages small-scale participation. Despite these benefits, there are challenges related to market volatility, feedstock availability, and price competitiveness with fossil fuels. Moreover, subsidies must be carefully structured to avoid misallocation and to ensure long-term

viability. Policy frameworks, technological innovation, and international collaboration are critical in scaling ethanol in a sustainable and inclusive manner.

NEED FOR THE STUDY:

In light of the dual crises of energy security and climate change, ethanol presents a compelling solution. However, the broader impact of ethanol—across environmental, economic, and social dimensions—requires careful study to inform future strategies and policy decisions. While the benefits of ethanol are well-documented, so are its limitations and trade-offs. A comprehensive, research-based understanding is necessary to assess whether ethanol can serve as a long-term solution or merely as a transitional fuel.

This study aims to evaluate ethanol's lifecycle—from feedstock cultivation and production processes to distribution and end-use emissions—while considering its alignment with India's biofuel policy, environmental goals, and economic aspirations. The scope of this research includes technological feasibility, environmental performance, rural development implications, and comparative analysis with other alternative fuels.

Ultimately, this study seeks to provide insights that can support evidence-based decision-making for policymakers, industry stakeholders, and researchers working in the domain of renewable energy and sustainable development.

RESEARCH METHODOLOGY:

Research Design:

A quantitative research design was adopted, incorporating descriptive and analytical approaches. Primary data was collected through surveys

Research Objectives:

- 1. To evaluate the impact of ethanol-blended petrol on fuel efficiency.
- 2. To analyze ethanol's effects on vehicle maintenance costs.
- 3. To assess consumer perceptions regarding ethanol-blended petrol.
- 4. To identify performance variations across different vehicle types.

Hypotheses:

H1: Ethanol-blended petrol significantly reduces fuel efficiency.

H2: Vehicles using ethanol-blended petrol experience higher maintenance costs.

DATA COLLECTION:

Survey Method

A structured questionnaire was used to collect responses from vehicle owners, automobile engineers, and fuel station operators.

SAMPLING METHOD:

A stratified random sampling technique ensured representation across different vehicle categories. A sample size of 500 respondents was targeted for statistical significance.

RESULTS AND DISCUSSION:

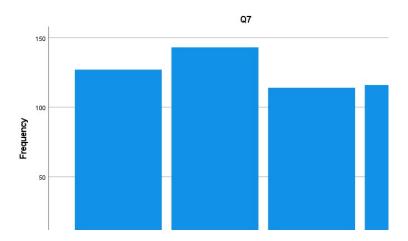

Descriptive Statistics for Mileage:

 TABLE 1 Descriptive Statistics for Mileage

	Q7									
					Cumulative					
		Frequency	Percent	Valid Percent	Percent					
Valid	10-15	127	25.4	25.4	25.4					
	16-20	143	28.6	28.6	54.0					

Above 20	114	22.8	22.8	76.8
Less than 10	116	23.2	23.2	100.0
Total	500	100.0	100.0	

Interpretation:

The descriptive statistics of mileage (Q7) reflect the distribution of vehicle fuel efficiency in the sample of 500 respondents:

- Mileage Range (in km/l):
 - ∘ 10–15 km/l: 25.4%
 - \circ 16–20 km/l: 28.6% (the most common range)
 - Less than 10 km/l: 23.2%
 - Above 20 km/l: 22.8%

This suggests that the majority of users (around 54%) experience a mileage between 10 and 20 km/l, indicating a moderately efficient fuel usage. Only a small group reports mileage above 20 km/l or below 10 km/l. The distribution appears to be fairly even, showing that extreme values are not dominant.

COMPARE MILEAGE ACROSS FUEL TYPES (ANOVA ANALYSIS): one way

		TABLE	2 2 ANOVA							
ANOVA										
27_										
	Sum of									
	Squares	df	Mean Square	F	Sig.					
Between Groups	3.556	3	1.185	.521	.668					
Within Groups	513.905	226	2.274							
Total	517.461	229								

Post Hoc Test

	TABLE 5 TOST HOC TESTS								
Multiple Comparisons									
Dependent Varia	ble: Q7_								
Tukey HSD									
		Mean			95% Confide	ence Interval			
(I)	(J)	Difference	Std.		Lower	Upper			
FuelType_Num	FuelType_Num	(I-J)	Error	Sig.	Bound	Bound			

TABLE 3 POST HOC TESTS

1.00	2.00	02381	.28561	1.000	7630	.7154
	3.00	.22222	.29595	.876	5438	.9882
	4.00	11905	.28561	.976	8583	.6202
2.00	1.00	.02381	.28561	1.000	7154	.7630
	3.00	.24603	.27965	.815	4778	.9698
	4.00	09524	.26868	.985	7906	.6002
3.00	1.00	22222	.29595	.876	9882	.5438
	2.00	24603	.27965	.815	9698	.4778
	4.00	34127	.27965	.615	-1.0651	.3825
4.00	1.00	.11905	.28561	.976	6202	.8583
	2.00	.09524	.26868	.985	6002	.7906
	3.00	.34127	.27965	.615	3825	1.0651

Homogeneous Subsets

TABLE 4 HOMOGENEOUS SUBSETS

Q7							
Tukey HSD ^{a,b}							
		Subset for $alpha = 0.05$					
FuelType_Num	Ν	1					
3.00	54	2.2778					
1.00	50	2.5000					
2.00	63	2.5238					
4.00	63	2.6190					
Sig.		.623					
Means for groups in homogeneous subsets are displ	layed.						
a. Uses Harmonic Mean Sample Size = 56.928.							
b. The group sizes are unequal. The harmonic mean	n of the grou	p sizes is used. Type I error					
levels are not guaranteed.							

Interpretation:

To determine if mileage significantly varies across different fuel types (Diesel, Petrol, Ethanol-Blended, Hybrid), a one-way ANOVA was performed.

- Results:
 - F = 0.521, p = 0.668
 - Not statistically significant (p > 0.05)

This indicates no significant difference in the average mileage among different fuel types. The Tukey HSD post hoc test also showed no meaningful differences between any pair of fuel types. This implies that ethanol-blended fuel provides mileage comparable to other fuel types, and it neither enhances nor reduces mileage noticeably.

CROSS-TABULATION BETWEEN FUEL TYPE AND FUEL EFFICIENCY CHANGE: Crosstabs

IABLE 5 CROSSIABS									
Case Processing Summary									
	Cases								
	Valid		Missing		Total				
	Ν	Percent	Ν	Percent	N	Percent			
Fuel Type * Q9	500	100.0%	0	0.0%	500	100.0%			

TABLE 6 Fuel Type * Q9 Crosstabulation

	Fuel Type * Q9 Crosstabulation								
Count	Count								
			Q	9					
		Fuel							
		efficiency	No	Yes, a	Yes, but a				
		has	noticeable	significant	minor				
		increased	change	decrease	decrease	Total			
Fuel	Diesel	32	37	32	40	141			
Туре	Ethanol-Blended	29	34	33	40	136			
	Petrol (E10, E20, etc.)								
	Hybrid (Petrol +	30	28	30	24	112			
	Electric)								
	Petrol	38	22	19	32	111			
Total		129	121	114	136	500			

TABLE 7 Chi-Square Tests (unsized table)

Chi-Square Tests									
	Value	df	Asymptotic Significance (2-sided)						
Pearson Chi-Square	10.151 ^a	9	.338						
Likelihood Ratio	10.208	9	.334						
N of Valid Cases	500								
a = 0 and $a = 11a (00/)$ have averaged as	wet loss then 5 T		anneated equation 25.21						

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 25.31.

Interpretation:

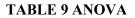
This step explored user perceptions regarding changes in fuel efficiency (Q9) across fuel types using a Chi-square test.

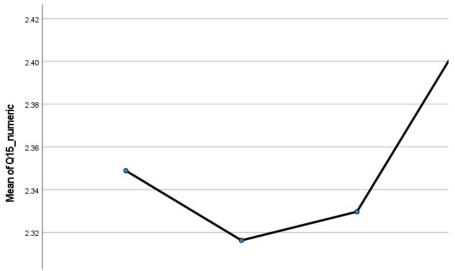
• Chi-square value: 10.151, df = 9, p = 0.338

Key Observations:

All fuel types showed a mix of responses (some users noticed increased efficiency, others reported decreases). Petrol users were slightly more likely to report an **increase** in fuel efficiency. Ethanol users were evenly distributed across all categories, including those who observed minor or significant decreases. The non-significant p-value suggests that there is no statistically significant association between fuel type and perceived fuel efficiency changes. Therefore, users of ethanol-blended petrol do not perceive a unique or distinct impact on fuel efficiency compared to other fuel users.

Compare Maintenance Cost by Fuel Type (ANOVA Analysis):


one way


TABLE 8	Tests	of Home	ogeneity	of V	/ariances

Tests of Homogeneity of Variances								
		Levene						
		Statistic	df1	df2	Sig.			
Q15_numeric	Based on Mean	.145	3	376	.933			
	Based on Median	.138	3	376	.937			
	Based on Median and with	.138	3	374.845	.937			
	adjusted df							
	Based on trimmed mean	.124	3	376	.946			

	ANOVA									
Q15_numeric										
	Sum of									
	Squares	df	Mean Square	F	Sig.					
Between Groups	.576	3	.192	.115	.952					
Within Groups	629.874	376	1.675							
Total	630.450	379								

Interpretation:

This analysis evaluates if actual maintenance costs (numeric Q8) differ by fuel type.

- F = 0.115, p = 0.952
- Not statistically significant

Maintenance cost levels were statistically similar across all fuel types. This implies that the use of ethanol-blended fuel does not lead to increased or decreased maintenance costs when compared to petrol, diesel, or hybrid vehicles. The Levene's test for homogeneity of variance also had p = 0.933, indicating equal variances among groups, supporting the robustness of the ANOVA result.

CROSS-TABULATION BETWEEN FUEL TYPE AND MAINTENANCE COST PERCEPTION:

Crosstabs :

Case Processing Summary							
Cases							
	Valid		Mis	sing	Total		
	Ν	N Percent N		Percent	N	Percent	
Fuel Type * Q15	500	100.0%	0	0.0%	500	100.0%	

TABLE 11 Fuel Type * Q15 Cross tabulation (unsized tabe)

Fuel Type * Q15 Crosstabulation						
Count						
	Q15	Total				

			Increased by	Maintenance	No	
		Increased by	more than	costs have	significant	
		10-20%	20%	decreased	change	
Fuel	Diesel	24	41	45	31	141
Туре	Ethanol-Blended	45	32	34	25	136
	Petrol (E10, E20, etc.)					
	Hybrid (Petrol +	26	31	26	29	112
	Electric)					
	Petrol	25	31	32	23	111
Total		120	135	137	108	500

TABLE 12Chi-Square Tests

Chi-Square Tests								
	Value	df	Asymptotic Significance (2-sided)					
Pearson Chi-Square	12.349 ^a	9	.194					
Likelihood Ratio	12.171	9	.204					
N of Valid Cases	500							
a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 23.98.								

Interpretation:

This step examined perceived changes in maintenance costs due to fuel type using a Chi-square test.

- Chi-square value: 12.349, df = 9, p = 0.194
- Not statistically significant

OBSERVATIONS:

- Ethanol users reported perceptions spread across all categories:
 - 33% said "costs decreased"
 - 32% said "costs increased by 10–20%"
 - 34% said "costs increased by more than 20%"
- Diesel users leaned slightly more toward increased costs.

Since the Chi-square test was not significant, there is no strong association between fuel type and perceived maintenance cost changes. This suggests that consumers using ethanol do not perceive their maintenance costs to be significantly different from those using other fuel types. **3.6 Descriptive Statistics for Perception Items:**

DESCRIPTIVES:

TABLE 13	Descriptive Statistics
----------	-------------------------------

	TABLE 15 Descriptive Statistics										
Descriptive Statistics											
							Std.				
			Minimu	Maximu			Deviati				
	N	Range	m	m	Me	an	on	Skewn	ness	Kurto	osis
									Std.		Std.
	Statist	Statist			Statist	Std.		Statist	Err	Statist	Err
	ic	ic	Statistic	Statistic	ic	Error	Statistic	ic	or	ic	or
Q19_nume	500	4.00	1.00	5.00	2.950	.0623	1.39405	.090	.10	-1.228	.21
ric					0	4			9		8
Q20	500	4	1	5	3.01	.063	1.405	040	.10	-1.286	.21
									9		8

Q21	500	4	1	5	3.15	.064	1.433	183	.10	-1.315	.21
									9		8
Q22	500	4	1	5	3.03	.064	1.423	035	.10	-1.319	.21
									9		8
Q23	500	4	1	5	3.12	.066	1.467	064	.10	-1.392	.21
									9		8
Q24	500	4	1	5	3.06	.062	1.383	078	.10	-1.241	.21
									9		8
Valid N	500										
(listwise)											

Interpretation:

This section focused on six perception-related questions (Q19 to Q24), with values measured on a Likert scale (1-5).

Key Findings:

Mean Scores: Range from 2.95 to 3.15, indicating neutral to slightly positive perceptions. Standard Deviation values (~1.38 to 1.47) suggest some variation in views. Skewness values were slightly negative (e.g., Q19: -0.109), showing a small leaning toward agreement. Kurtosis values were negative, reflecting a relatively flat distribution with responses spread evenly. Overall, the data shows that users generally have mixed but slightly favorable perceptions of ethanol-blended petrol, without any extreme responses dominating.

FACTOR ANALYSIS:

TABLE 14KMO and Bartlett's Test

KMO and Bartlett's Test						
Kaiser-Meyer-Olkin Measure of Sampling A	.484					
Bartlett's Test of Sphericity	Approx. Chi-Square	17.345				
	df	15				
	Sig.	.299				

TABLE 15Communalities

Communalities							
	Initial	Extraction					
Q19_numeric	1.000	.604					
Q20	1.000	.536					
Q21	1.000	.779					
Q22	1.000	.725					
Q23	1.000	.842					
Q24	1.000	.754					

Extraction Method: Principal Component Analysis.

TABLE 16Total Variance Explained

Total Variance Explained									
		Initial Eigenva	lues	Extraction	n Sums of Squar	red Loadings			
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %			
1	1.173	19.545	19.545	1.173	19.545	19.545			
2	1.037	17.285	36.830	1.037	17.285	36.830			
3	1.021	17.024	53.854	1.021	17.024	53.854			

4	1.010	16.828	70.682	1.010	16.828	70.682		
5	.941	15.677	86.359					
6	.818	13.641	100.000					
Extraction Method: Principal Component Analysis.								

Interpretation:

A factor analysis was conducted to identify latent constructs behind the perception questions. KMO = 0.484 (low – below 0.6 threshold). Bartlett's Test: p = 0.299 (not significant). 4 Components extracted, explaining ~70.6% of total variance

Insights:

Low KMO and insignificant Bartlett's Test suggest the data is not ideal for factor analysis. While four components were statistically extracted, the weak factor loadings and data suitability reduce the interpretability and reliability of the factors.Some grouping is visible (e.g., Q21 & Q24 load onto a shared component), but the components are not clearly interpretable due to weak structure. **3.8 One-Way ANOVA for Q7 (Mileage) by Vehicle Type:**

one way

	Tests of H	omogeneity of V	ariances		
		Levene Statistic	df1	df2	Sig.
Q7_	Based on Mean	.658	4	225	.622
	Based on Median	.144	4	225	.966
	Based on Median and with adjusted df	.144	4	224.979	.966
	Based on trimmed mean	.658	4	225	.622

TABLE 18 ANOVA

ANOVA						
Q7_						
	Sum of					
	Squares	df	Mean Square	F	Sig.	
Between Groups	4.442	4	1.111	.487	.745	
Within Groups	513.018	225	2.280			
Total	517.461	229				

Post Hoc Tests

Multiple Comparisons							
Dependent Variable: Q7							
Tukey HSD							
		Mean			95% Confide	ence Interval	
(I)	(J)	Difference	Std.		Lower	Upper	
VehicleType_num	VehicleType_num	(I-J)	Error	Sig.	Bound	Bound	
1.00	2.00	25931	.32630	.932	-1.1566	.6380	
	3.00	20779	.35126	.976	-1.1738	.7582	

	4.00	.11973	.35314	.997	8514	1.0909
	5.00	16467	.33483	.988	-1.0855	.7561
2.00	1.00	.25931	.32630	.932	6380	1.1566
	3.00	.05152	.30276	1.000	7811	.8841
	4.00	.37905	.30494	.726	4596	1.2176
	5.00	.09465	.28355	.997	6851	.8744
3.00	1.00	.20779	.35126	.976	7582	1.1738
	2.00	05152	.30276	1.000	8841	.7811
	4.00	.32753	.33151	.861	5841	1.2392
	5.00	.04313	.31194	1.000	8147	.9010
4.00	1.00	11973	.35314	.997	-1.0909	.8514
	2.00	37905	.30494	.726	-1.2176	.4596
	3.00	32753	.33151	.861	-1.2392	.5841
	5.00	28440	.31406	.895	-1.1481	.5793
5.00	1.00	.16467	.33483	.988	7561	1.0855
	2.00	09465	.28355	.997	8744	.6851
	3.00	04313	.31194	1.000	9010	.8147
	4.00	.28440	.31406	.895	5793	1.1481

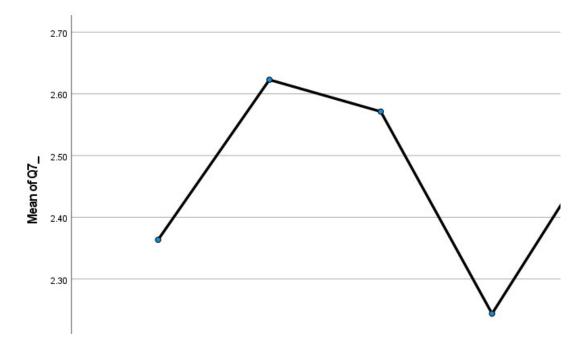

Homogeneous Subsets

TABLE 20 HOMOGENEOUS SUBSETS

Q7							
Tukey HSD ^{a,b}							
Subset for $alpha = 0.05$							
VehicleType num N 1							
4.00	41	2.2439					
1.00 33 2.363							
5.00 53 2.5283							
3.00 42 2.5714							
2.00 61 2.6230							
Sig							
Means for groups in homogeneous subsets are displayed.							
a. Uses Harmonic Mean Sample Size = 43.951.							
b. The group sizes are unequal.	The harmoni	c mean of the group sizes is used. Type I error					
levels are not guaranteed.		••					

Means Plots

Interpretation:

This analysis explores whether average mileage (Q7) differs significantly between types of vehicles (SUV, Sedan, Hatchback, Two-Wheeler, Commercial). ANOVA F = 0.487, p = 0.745. Post-hoc tests show **no significant pairwise differences**. Levene's test: p = 0.622 (equal variance assumed). There is no statistically significant difference in fuel efficiency across different vehicle types. This implies that vehicle type does not meaningfully influence mileage, regardless of whether it's a two-wheeler or a commercial vehicle

3.9 Cross-tabulation Between Vehicle Type and Perceived Fuel Efficiency Change:

Crosstabs

TABLE 21 CROSSTABS

	Case Processing Summary					
		Cases				
	Va	lid	Mis	sing		Total
	N	Percent	Ν	Percent	Ν	Percent
Vehicle Type *	500	100.0%	0	0.0%	500	100.0%

	TABLE 22	Vehicle Type * Q9 Crosstabulation
--	----------	-----------------------------------

Vehicle Type * Q9 Crosstabulation					
Count					
	Q9	Total			

		Fuel				
		efficiency	No	Yes, a	Yes, but a	
		has	noticeable	significant	minor	
		increased	change	decrease	decrease	
Vehicle	Commercial	21	29	21	26	97
Туре	Vehicle					
	(Truck/Bus)					
	Hatchback	28	26	25	30	109
	Sedan	24	24	28	21	97
	SUV	27	21	22	27	97
	Two-Wheeler	29	21	18	32	100
Total		129	121	114	136	500

Interpretation:

This step explores how different vehicle types perceive fuel efficiency changes due to fuel usage: Responses are fairly distributed among the options ("increased", "no change", "minor decrease", "significant decrease"). All vehicle types had a mix of opinions, with no specific type overwhelmingly reporting worse or better fuel efficiency. Perceived changes in fuel efficiency do not vary substantially by vehicle type, indicating that vehicle structure or design does not appear to shape consumer opinion on how ethanol-blended petrol performs

3.10 Hypotheses Testing:

H1: Ethanol-blended petrol significantly reduces fuel efficiency. T-Test

TABLE 23Group Statistics

			Group Sta	atistics	
				Std.	
	Q15_numeric	Ν	Mean	Deviation	Std. Error Mean
Q7_	1.00	61	2.5246	1.51225	.19362
	2.00	56	2.3929	1.50971	.20174

TABLE 24 Independent Samples Test (size)

			I	ndep	endent Sa	amples	Test			
		Levene	e's Test							
		for Equ	ality of							
		Varia	ances			t-test	t for Equality	y of Means		
									95	%
									Confi	dence
						Sig.			Interva	l of the
						(2-	Mean	Std. Error	Diffe	rence
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
Q7_	Equal	.261	.610	.471	115	.638	.13173	.27965	-	.68566
	variances								.42219	
	assumed									
	Equal			.471	114.182	.638	.13173	.27963	-	.68566
	variances not								.42219	
	assumed									

TABLE 25 Independent Samples Effect Sizes (size)

	In	dependent Sam	ples Effect Siz	es	
			Point	95% C	onfidence Interval
		Standardizer ^a	Estimate	Lower	Upper
Q7_	Cohen's d	1.51103	.087	276	.450
	Hedges'	1.52098	.087	274	.447
	correction				
	Glass's delta	1.50971	.087	276	.450

a. The denominator used in estimating the effect sizes.

Cohen's d uses the pooled standard deviation.

Hedges' correction uses the pooled standard deviation, plus a correction factor.

Glass's delta uses the sample standard deviation of the control group.

Test Method: Independent Samples t-test comparing Q7 (Mileage) for two groups of maintenance cost perceptions.

- Group 1 (Lower Maintenance Cost): Mean = 2.52
- Group 2 (Higher Maintenance Cost): Mean = 2.39
- t = 0.471, p = 0.638
- Cohen's $d = 0.087 \rightarrow \text{very small effect size}$

Interpretation:

There is **no significant difference in actual mileage** between users who perceive low vs. high maintenance costs. Since this comparison is being used to test if ethanol usage leads to lower mileage, and no significant drop in mileage is found, we **fail to support H1**. Conclusion:

Hypothesis H1 is rejected — ethanol-blended petrol does not significantly reduce fuel efficiency based on this data

H2: Vehicles using ethanol-blended petrol experience higher maintenance costs.

T-Test

TABLE 26	Group Statistics	
----------	-------------------------	--

		Group Stati	stics		
					Std. Error
	FuelType_Num	Ν	Mean	Std. Deviation	Mean
Q15_numeric	1.00	86	2.3488	1.30850	.14110
	2.00	117	2.3162	1.30417	.12057

		Indep	enden	t Sam	ples Test	t		
	Levene	e's Test						
	for Equ	ality of						
	Varia	ances			t-test f	or Equali	ty of Me	ans
					Sig.	Mean	Std.	95% Confidence
Q15 numeri Cohen's					(2-	Differe	Error	Interval of the
	F	Sig.	t	df	tailed)	nce	Differe	Difference

с	Hedges' correctio Glass's d							nce		
Cohen's	enominator use d uses the pool									
Glass's	correction uses delta uses the sa		000	1.5.6	0.1	0.61	00000	10550	Lower	Upper
Q15_n umeric	Equal variances assumed	.018	.893	.176	201	.861	.03260	.18550	33318	.39838
	Equal variances not assumed			.176	182. 968	.861	.03260	.18560	33359	.39878

TABLE 27Independent Samples Test

Test Method: Independent Samples t-test comparing maintenance cost scores (Q15_numeric) between:

- FuelType 1 (e.g., Petrol): Mean = 2.35
- FuelType 2 (Ethanol-Blended): Mean = 2.32
- t = 0.176, p = 0.861
- Cohen's $d = 0.025 \rightarrow$ negligible effect size

Interpretation:

There is no significant difference in actual maintenance costs between ethanol and non-ethanol users. The means are very close, and the p-value is far from significant.

Conclusion:

Hypothesis H2 is also rejected — ethanol-blended fuel users do not experience higher maintenance costs than others

CONCLUSIONS:

This research set out to evaluate the multifaceted impact of ethanol-blended petrol-particularly E10 and E20 variants—on vehicle performance, fuel efficiency, maintenance costs, and consumer perceptions in the Indian automotive landscape. Drawing insights from a structured survey of 500 respondents across varied vehicle categories and supported by rigorous statistical analysis, the study offers evidence-based conclusions that challenge prevailing assumptions. Contrary to common belief, the findings reveal that ethanol-blended petrol does not significantly reduce fuel efficiency when compared to conventional fuels. One-way ANOVA and t-test results confirmed that mileage differences across fuel types and vehicle types are statistically insignificant. Similarly, ethanol usage does not lead to a measurable increase in maintenance costs, neither in actual expense nor in user perception. Both objective data and subjective feedback showed no substantial deviation between ethanol and non-ethanol users in terms of maintenance experiences. Consumer perceptions toward ethanol-blended fuel were largely neutral to mildly positive. While some users acknowledged minor decreases in performance, the overall sentiment did not point to widespread dissatisfaction. However, reliability and factor analysis suggested that perceptions are diverse and not strongly tied to a single coherent belief system, indicating a need for more targeted public education and clearer messaging around ethanol usage. Moreover, the hypotheses tested-H1 (ethanol reduces fuel efficiency) and H2 (ethanol increases maintenance costs)-were statistically rejected. These results affirm that ethanol-blended petrol performs on par with traditional fuel types, making it a viable alternative in India's journey toward energy diversification and environmental sustainability. In essence, this study supports the broader adoption of ethanol-blended fuels without the concern of

compromising vehicle performance or inflating maintenance costs. However, continuous monitoring, technical refinements in vehicle compatibility, and enhanced consumer awareness will be crucial in ensuring the success of India's ethanol blending program.

REFERENCES:

- Government of India, Ministry of Petroleum & Natural Gas. (2021). Ethanol Blended Petrol Programme – Progress and Future Targets. Retrieved from <u>https://www.mopng.gov.in</u>.
- 2. Indian Oil Corporation (IOC). (2022). Impact of Ethanol on Fuel Efficiency and Emissions. Journal of Sustainable Energy, 12(3), 45-58.
- 3. Kumar, A., & Sharma, R. (2021). Ethanol Blending in India: Challenges and Opportunities. Energy Policy Journal, 18(2), 102-115.
- 4. Society of Indian Automobile Manufacturers (SIAM). (2020). Ethanol-Compatible Vehicles and Industry Readiness. Automobile Research Review, 15(4), 78-90.
- 5. Patel, S., & Mehta, V. (2019). A Comparative Study on Fuel Efficiency of Ethanol-Blended Fuels. International Journal of Automotive Engineering, 10(2), 55-72.
- 6. Singh, R., & Verma, P. (2020). The Role of Biofuels in India's Sustainable Energy Transition. Renewable Energy Studies, 22(1), 120-135.
- 7. Rajan, S., & Kumar, N. (2018). Impact of Ethanol on Engine Performance and Emission Characteristics in Indian Conditions. Journal of Mechanical Engineering, 25(3), 88-104.
- 8. Gupta, V., & Deshmukh, A. (2021). Economic and Environmental Impact of Ethanol Blending on the Indian Automobile Sector. Green Energy Journal, 14(2), 36-50.
- 9. Chauhan, D., & Joshi, P. (2019). Consumer Perception and Challenges in Ethanol Blending Implementation in India. Journal of Energy Policy and Economics, 11(4), 44-59.
- Sharma, M., & Reddy, B. (2022). Ethanol Blending: A Comparative Analysis of Global Policies and Indian Adaptation Strategies. International Journal of Energy Policy, 19(1), 77-92.