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Abstract: 

Monkeypox is an emerging zoonotic disease that has raised global health concerns due to its increasing 

transmission rates. Traditional diagnostic methods rely on laboratory testing, which can be time-

consuming and inaccessible in resource-limited settings. This study presents an Optimized Deep Neural 

Framework (ODNF) to diagnose monkeypox based on clinical symptoms, leveraging deep learning for 

accurate and rapid classification. The research explores various machine learning models, including 

Random Forest, XG Boost, and Cat Boost, before implementing ODNF, which achieved superior 

performance with a 99% accuracy rate. The dataset underwent preprocessing steps, including handling 

imbalanced data and feature encoding, ensuring optimal learning. Additionally, Local Interpretable 

Model-Agnostic Explanations (LIME) was employed to enhance model interpretability, providing 

insights into symptom-based predictions. Comparative evaluation against traditional models 

demonstrated that ODNF outperforms existing approaches, making it a viable AI-based diagnostic tool 

for monkeypox detection. 
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1. Introduction    

The 1970s saw the discovery of monkeypox, a viral zoonotic disease, in the Democratic Republic of 

the Congo [1]. Outbreaks have been documented globally since May 2022, and by August 2022, there 

were over 318,000 confirmed cases [2][3]. The virus, classified under the Poxviridae family, is closely 

related to smallpox and presents symptoms such as fever, skin lesions, lymphadenopathy [4], and 

respiratory complications. The rapid transmission of monkeypox through direct human-to-human 

contact, respiratory droplets, and contaminated surfaces has posed significant public health concerns 

[5]. 

Reducing the disease's spread requires prompt and accurate diagnosis. Antigen detection and 

polymerase chain reaction (PCR) testing are examples of traditional techniques that are impracticable 

in environments with low resources since they call for specialised labs and skilled workers [6]. 

Furthermore, symptom overlap with other infectious diseases often leads to misdiagnosis. Medical 

diagnostics have benefited greatly from the automated and scalable solutions provided by artificial 

intelligence (AI) and machine learning (ML) approaches. In recent years, deep learning approaches, 

particularly convolutional neural networks (CNNs), have been used for image-based monkeypox 

detection. However, CNN-based methods require high-quality image datasets and suffer from 

computational inefficiencies [7]. This study introduces the Optimized Deep Neural Framework 

(ODNF), a novel ANN-based approach that leverages clinical symptom data for early monkeypox 

detection. Unlike traditional methods, ODNF integrates advanced optimization strategies such as 

adaptive learning rate scheduling, dropout regularization, and batch normalization to improve 

classification performance. We evaluate various ML models, including Random Forest, XGBoost, and 

CatBoost, before demonstrating the superiority of ODNF. The model’s interpretability is enhanced 

using LIME explainability, enabling medical practitioners to understand the significance of specific 

symptoms in classification decisions. 

Our key contributions include: 

1. Development of a deep learning-based ODNF model trained on clinical symptom data, 

achieving 99% accuracy. 
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2 Comparative assessment of multiple machine learning models, including Random Forest and 

boosting algorithms . 

3 The use of Local Interpretable Model-agnostic Explanations (LIME) to enhance model 

interpretability and support clinical judgement. 

4 Scalability and real-time applicability, making ODNF a practical alternative to existing 

diagnostic tools. 

 

2. Related Work 

Several research efforts have explored AI-based monkeypox diagnosis using image classification 

techniques. Studies leveraging CNNs, ResNet, and EfficientNet have shown promising results in 

distinguishing monkeypox lesions from other dermatological conditions[8][9]. However, image-based 

models require high-quality datasets and suffer from misclassification in cases of similar skin 

conditions. The real-world deployment of image-based classifiers is often limited due to the 

computational cost associated with training deep learning models on large image datasets. 

In contrast, symptom-based models have gained attention for their ability to detect diseases without 

requiring medical imaging. Previous studies have implemented gradient boosting algorithms 

(XGBoost, CatBoost, LightGBM) to classify diseases based on symptoms[10][11]. While boosting 

techniques have improved performance, they often lack explainability, limiting their real-world 

deployment. Moreover, traditional machine learning approaches struggle with class imbalances and 

feature dependencies, which can lead to biased predictions in real-world clinical applications. Some 

existing studies have attempted to develop symptom-based models, but their effectiveness has been 

constrained due to small dataset sizes, limiting their ability to generalize across diverse patient 

populations [12]. These limitations emphasize the need for models trained on large-scale symptom 

datasets, enabling improved accuracy and robustness in monkeypox diagnosis. 

 

3. Methodology 

The study follows a structured approach to develop and evaluate the Optimized Deep Neural 

Framework (ODNF) for monkeypox diagnosis based on clinical symptoms. This section details the 

dataset, preprocessing techniques, machine learning models used for comparison, and the architecture 

of the proposed deep learning model. The overall pipeline, showcasing how input symptom-based data 

is processed through various models (Random Forest, XGBoost, CatBoost, and ODNF) before 

interpretability techniques like  LIME are applied, is depicted in Figure 2. This flowchart provides a 

structured view of the analytical framework employed in this study. 

 
Figure 1 

Dataset 

The dataset utilised in this research was obtained from a Kaggle source that is openly accessible, which 

is based on a study published by BMJ on clinical presentations of monkeypox cases during the 2022 

outbreak[13]. The original dataset contained thousands of patient records, with each entry documenting 

various clinical symptoms and a target variable indicating whether the patient was diagnosed with 

monkeypox. However, to ensure high-quality model training, the dataset underwent preprocessing to 

address missing values and class imbalance. 

One of the primary issues was the presence of missing values in the Systemic Illness column. Rather 

than imputing these values, the rows containing missing entries were removed to maintain data 
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integrity. Additionally, the dataset was highly imbalanced, with significantly more negative cases than 

positive cases. This imbalance was addressed through data balancing techniques, ensuring an equal 

distribution of both classes to prevent biased model training. A snapshot of the dataset structure is 

shown in Figure 2, providing insight into the clinical symptoms used for model training. 

 
Figure 2 

Machine Learning Models 

A variety of machine learning models, including Random Forest, XGBoost, and CatBoost, were used 

to establish a performance benchmark. These models were chosen due to their proven effectiveness in 

medical diagnosis and their successful performance in handling structured datasets. To increase 

classification accuracy, Random Forest, an ensemble learning technique, constructs many decision 

trees and aggregates their output [14]. XGBoost, a popular gradient boosting algorithm, enhances 

prediction precision by iteratively rectifying mistakes from previous cycles[15]. CatBoost, a different 

gradient boosting technique, excels at efficiently managing categorical data and reducing 

overfitting[16]. 

Every machine learning model experienced hyperparameter adjustments to enhance its performance. 

A cross-validation method was utilized to guarantee reliability in assessment, reducing overfitting 

while enhancing generalization. The models were evaluated with standard classification metrics such 

as, precision, recall, accuracy F1-score, and ROC-AUC. These metrics offered a thorough assessment 

of the performance of conventional classifiers prior to contrasting them with the suggested deep 

learning model. 

Proposed Model (ODNF) 

The Optimized Deep Neural Framework (ODNF) was developed as a deep learning-based 

classification model capable of effectively predicting monkeypox cases based on clinical symptoms. 

In contrast to conventional machine learning algorithms that use boosting techniques or 

predefined  decision trees, ODNF leverages deep neural networks to extract meaningful 

representations from patient data, improving classification accuracy. The model is structured with 

multiple hidden layers, allowing it to learn complex relationships between symptoms and disease 

outcomes. The architectural design of ODNF is depicted in Figure 3, illustrating the flow of patient 

data through the network. To enhance the generalization capability of ODNF, A number of optimisation 

strategies were used. By randomly deactivating specific neurones during training, dropout 

regularisation was used to lessen overfitting. In order to stabilise the learning process, batch 

normalisation was implemented to improve model convergence by normalizing activations at each 

layer. Additionally, an adaptive optimization algorithm was utilized to dynamically adjust learning 

rates, ensuring efficient weight updates throughout training. 

To further refine model performance, early stopping was implemented, preventing  
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Figure 3 

excessive training cycles once validation performance plateaued. A learning rate scheduler was also 

integrated to reduce the learning rate upon detecting stagnation in loss improvement, enabling smoother 

convergence. The final output layer of the model employs an activation function suitable for binary 

classification, allowing for accurate determination of monkeypox presence or absence. 

 To formally define feature transformation in ODNF, let 𝑅𝑁×𝑑 represent the input matrix, where N is 

the number of samples and d is the feature dimension. The transformation at the l-th layer is given by: 

𝐻(𝑙) = f(𝑊(𝑙) 𝐻(𝑙−1) + 𝑏(𝑙))            (1) 

Where 𝐻(1−𝑙) is the activation from the previous layer, 𝑊𝑙 ∈  𝑅𝑑𝑙×𝑑𝑙−1   is the learned weight matrix, 

𝑏𝑙  is the bias term, f(⋅) represents a non-linear activation function (ReLU, Sigmoid), 𝐻(0) = X is the 

original input matrix.This formulation ensures that feature representations evolve hierarchically, 

capturing increasingly abstract patterns at each layer.To ensure stable weight updates, ODNF employs 

adaptive gradient correction, modifying the  

weight update rule in gradient descent as follows: 

Wₜ₊₁ = Wₜ - ηₜ · (mₜ ÷ (√vₜ + ε))                (2) 

Where mₜ and vₜ are the first and second moment estimates of the gradients, ε is a tiny constant to avoid 

division by zero, and 𝑊𝑡 stands for the weights at iteration t. 𝜂𝑡 is the dynamic learning rate at iteration 

t. 

To formally define the regularization applied in ODNF, we introduce a customized weight constraint 

function based on L2 regularization:      

Ω(W) = λ ∑₍ᵢ,ⱼ₎ 𝑊2ᵢ,ⱼ + α ∑ ⱼ |Hⱼ|               (3)         

Where λ ∑₍ᵢ,ⱼ₎ 𝑊2ᵢ,ⱼ  penalizes large weight values (L2 regularization) and α ∑ ⱼ |Hⱼ| controls activation 

magnitudes to prevent neuron saturation. 
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By integrating these multi-objective constraints, ODNF enforces a balance between representational 

richness and weight sparsity, preventing overfitting while ensuring optimal feature extraction.                 

 

4. Experimental Setup 

The model was trained in a GPU-accelerated environment using TensorFlow and Keras, ensuring 

efficient computation and scalability for large datasets. To guarantee an impartial evaluation procedure, 

the dataset was divided into three parts: 80% for training, 10% for validation, and 10% for testing. To 

improve model performance while lowering the risk of overfitting, a variety of hyperparameters were 

carefully changed, such as batch size, learning rate, and the number of epochs. During training, a 

scheduling method was used to dynamically adjust the learning rate in order to obtain stable 

convergence. 

A 10-fold cross-validation technique was used to evaluate model performance, guaranteeing that no 

particular data split had an impact on the results of the evaluation. In order to provide a thorough 

evaluation, the model's efficacy was assessed using popular classification measures, such as precision, 

recall, accuracy, F1-score, and the area under the ROC curve (AUC-ROC). By analysing validation 

accuracy, early stopping was used during training to cut down on pointless computations and avoid 

overfitting. 

Furthermore, regularization techniques, such as dropout layers and weight decay, were incorporated to 

improve the model's generalization ability on unseen data. In addition to training the deep learning-

based ODNF model, performance comparisons were conducted with traditional machine learning 

models, including Random Forest, XGBoost, and CatBoost. These machine learning models also 

underwent hyperparameter tuning to achieve their best possible performance.The trained model's 

generalization ability was evaluated using an independent dataset, and confusion matrices were used 

to analyze classification outcomes, particularly focusing on false positives and false negatives. These 

experimental evaluations provided insights into the model’s effectiveness and how well it generalizes 

across different data distributions. 

 

5. Results and Discussion 

A predictive model's efficacy is assessed by how well it generalises to new data while retaining high 

classification accuracy. This study evaluated the suggested Optimised Deep Neural Framework 

(ODNF) with several machine learning models, such as Random Forest, XGBoost, and CatBoost. Key 

classification parameters like accuracy, precision, recall, F1-score, and AUC-ROC were used to assess 

these models' performance.A 10-fold cross-validation method was used to guarantee generalisation and 

robustness. The interpretability of the suggested model, which was examined using LIME (Local 

Interpretable Model-Agnostic Explanations), was another important component of this investigation. 

The most important features in the categorisation process were found using LIME. The results in this 

part provide a thorough examination of feature significance and model performance. 

Performance of the Proposed Model 

When compared to conventional machine learning models, the suggested ODNF model performed 

better. With an accuracy of 99.12%, the model outperformed other models by a substantial margin. The 

model maintains an outstanding balance between false positives and false negatives, as seen by the 

high precision (98.76%) and recall (99.28%).Figure 4, which shows the accuracy and loss rates over 

epochs, shows the ODNF training process. The model's effective generalisation is confirmed by the 

Figure's fast convergence and excellent validation accuracy stabilisation.Table 1 summarises the final 

evaluation results on the test dataset, which show that ODNF continues to perform well in 

classification. 
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Table1 

 

 

 

 

 

 

According to a thorough confusion matrix investigation, ODNF reduces misclassification mistakes. 

Monkeypox-positive patients are rarely misdiagnosed thanks to the decreased false negative rate, 

which is essential for containment and early management.Figure 5 is an illustration of the confusion 

matrix. The ODNF model's great discriminatory ability in differentiating between monkeypox-positive 

and negative cases is further demonstrated by its AUC-ROC score. According to the ROC-AUC curve 

(Figure 6), ODNF was successful in differentiating between the two groups, as evidenced by its AUC 

score of 0.99. 

Comparative Analysis of Models 

The following Table 2 presents the performance metrics of all models tested in this study 

.  

Figure 4 

 
Figure 5 

Phase Accuracy(

%) 

Loss 

Training 99.35 0.012 

Evaluation 99.92 0.018 

Test Set 99.10 0.020 
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Figure 6 

 
Table 2 

This comparison clearly illustrates that ODNF significantly outperforms conventional machine 

learning models in all key performance metrics. 

K-Fold Cross-Validation 

10-Fold Cross-Validation was used to assess ODNF's capacity for generalisation. The model is robust 

and does not overfit to the training data, as evidenced by the mean accuracy over folds being constant 

with little deviation. This provides more proof of ODNF's dependability in practical settings.Table 3 

provides an illustration of the findings. 

 
Table 3 

6.LIME-Based Model Interpretability 

The most important features influencing the classification result were determined using Local 

Interpretable Model-Agnostic Explanations (LIME) in order to guarantee decision-making 

transparency [17][18]. The results are illustrated in Figure 6, showcasing the contribution of symptoms 

such as fever, swollen lymph nodes, rectal pain, and muscle aches towards a positive monkeypox 

diagnosis.LIME analysis confirms that key clinical symptoms strongly correlate with monkeypox 

cases, reinforcing the model’s reliability. Features such as fever, swollen lymph nodes, rectal pain, and 

sexually transmitted infections emerged as the most influential factors in predicting positive cases. This 
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interpretability ensures that medical practitioners can understand and trust the predictions made by 

ODNF, making it a valuable tool for real-world deployment.             

                                                        

7.Conclusion and Future Work 

This study introduces the Optimized Deep Neural Framework (ODNF), a deep learning model for 

monkeypox diagnosis based on clinical symptoms. Unlike prior research relying on image-based 

detection or traditional boosting models, our approach enhances accessibility and interpretability. The 

comparative analysis demonstrated that ODNF significantly outperforms conventional models, 

achieving an accuracy of 99.12%. By using 10-fold cross-validation, the model's resilience was further 

confirmed, guaranteeing dependability in practical situations. Additionally, LIME explainability 

confirmed that key clinical features contributing to monkeypox diagnosis align with medical 

knowledge, reinforcing model transparency. 

While the results highlight the efficacy of ODNF, future research can focus on integrating real-time 

clinical deployment for improved early detection. Expanding the dataset with multimodal inputs, such 

as laboratory test results, may enhance prediction accuracy. The proposed framework serves as a 

foundation for AI-driven infectious disease diagnosis, with potential applications in broader healthcare 

AI. 
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