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ABSTRACT 

Multi-objective optimisation algorithms (MOAs) solve complex engineering, design, and economics 

problems using computational search processes inspired by physical and biological phenomena. They 

were designed for unconstrained NP-complete problems, but constrained multi-objective optimisation 

problems (CMOPs) require special constraint management techniques. Modern constraint handling 

techniques (CHTs) integrated into MOAs are examined in this review to assess their performance and 

applicability. Key CHTs include penalty-based, feasibility rules, ε-constrained, stochastic ranking, 

repair-algorithm, and boundary-based strategies, each with pros and cons. Eight new feasibility rule 

and ε-constrained technique variants are proposed after reviewing over 60 key studies. High-

Performance Optimisation Computing Platform (HP-OCP), these variants show superior adaptability 

and robustness. Adaptive penalty functions, ensemble CHTs, and hybrid approaches to balance 

exploration and exploitation are recommended in the review. We also discuss computational overhead 

and convergence speed-solution quality trade-offs. In dynamically constrained, multi-modal, and high-

dimensional spaces, innovative approaches are needed. For designing algorithms that can solve real-

world engineering problems with strict constraints, the review emphasises hybridisation and adaptive 

mechanisms. This review helps researchers and practitioners find effective CHTs in MOAs by 

consolidating existing knowledge and proposing new solutions. These findings may extend 

metaheuristic optimisation to more complex real-world problems. 
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INTRODUCTION 

Contemporary optimisation problems are notably nonlinear and involve variables that are 

constrained by various functions and bounds. These issues are referred to as constrained optimisation 

problems (COPs) or nonlinear programming (NLP) problems, and their formulation can be articulated 

in the following general form, as outlined by Deb (2000): 

 
where f (x) is the objective function of the vector variable x, gj (x) are inequality and hk(x) are equality 

constraints, both referred to also as performance constraints, and xl
i , x

u
i are respectively the lower and 

upper limit values of component xi in x. Equality constraints can be converted into inequality 

constraints as gk (x) = |hk (x)| − e ≤ 0, k = 1, 2, ..., K, where e is a small positive quantity (e.g. 1.0E-3), 

and hence the two groups of performance constraints in expression (1) can be unified into a single 

group gj (x) ≤ 0, j = 1, 2, ...,m, where m = J + K. 
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Physical and biological phenomena inspire metaheuristic optimisation algorithms (MOAs), 

computational randomised search processes. The application field of MOAs has grown beyond 

physical and biological sciences to include engineering and economics. However, most MOAs were 

developed for unconstrained NP complete optimisation problems, making their application to COPs 

difficult due to constraint handling. MOAs are mostly used for COP issues. Since no constraint 

handling strategy (CHS) guarantees search algorithm convergence to the global optimum, overcoming 

the constraint handling obstacle has become an independent research field. Development of new CHSs 

and performance enhancement of existing ones have been research priorities. A number of authors 

have developed, improved, and evaluated CHSs implemented in MOAs for use in COPs in various 

fields. 

Coello and Montes (2002) reviewed and evaluated the most popular CHSs in evolutionary 

algorithms (EAs), including penalty, separation of constraints and objectives, special operators, hybrid, 

and repair-algorithm-based CHSs. A genetic algorithm was used to evaluate several penalty-based 

techniques. Mezura-Montes and Coello (2011) reviewed CHSs in nature-inspired algorithms, such as 

EAs and swarm intelligence, including feasibility rules, ε-constrained, penalty, stochastic ranking, 

special operators, multi-objective concepts, and ensemble CHSs. Mallipeddi et al. (2012) assessed 

penalty and adaptive penalty, feasible solutions, ε-constraint method, stochastic ranking, and ensemble 

CHSs for optimal reactive power dispatch (ORPD) problems using DE algorithms. Jordehi (2015) 

evaluated penalty-based CHSs, separatists, hybrids of particle swarm optimisation (PSO) with other 

optimisation methods, and other methods not listed above. Miranda-Varela and Mezura-Montes (2018) 

compared four surrogate-assisted algorithms (SA-DECV) using feasibility rules, ε-constrained 

method, stochastic ranking, and diversity maintenance CHS to other algorithms using 24 well-known 

test functions. According to Ameca-Alducin et al. (2018), a DE algorithm with penalty function, 

feasibility rules, ε-constrained method, and stochastic ranking CHSs was evaluated using benchmark 

dynamic COPs. Lin et al. (2019) evaluated four dynamic multimodal population-based optimisation 

algorithms, utilising feasible solution, ε-constraint method, penalty function, dynamic penalty 

function, and stochastic selection and ranking CHSs for dynamic multimodal COPs. Caraffini et al. 

(2019) examined the behaviour of popular DE schemes with different CHSs, such as penalty function 

and saturation/toroidal correction techniques, focussing on mutation and crossover operators that 

introduce structural bias in DE algorithms and appropriate CHSs, DE control parameters, and 

population size to moderate the bias. 

Despite the extensive research above, a systematic review of MOA CHSs has not been done. 

In this context, this paper provides a comprehensive state-of-the-art review of the most widely used 

and effective MOA CHSs. This paper introduces eight new variants of feasibility rules and ε-

constrained CHSs, comparing their performance to existing ones using a swarm intelligence pity beetle 

algorithm (Kallioras et al. 2018) with 14 mathematical and 6 engineering COPs. All computations are 

done using the MATLAB variant of High-Performance Optimisation Computing Platform (HP-OCP), 

the evolution of OCP (Lagaros 2014), which is based on C# object-oriented general-purpose code for 

civil engineering structural design optimisation. 

Section 2 presents a state-of-the-art review of nearly 60 CHS studies from the literature. Sect. 

3 provides an overview of penalty methods, feasibility rules, ε-constrained, stochastic ranking, and 

ensemble CHSs, along with eight novel variants of each. After a complete outline and formulation of 

Metaheuristic algorithm constraint handling strategies, the study concluded with an emphasis on 

features and limitations and a comprehensive review of innovative multi-objective optimisation 

solutions. 

Table1:  Constraint handling Strategies in Literature Review 
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Fig. 1: Bibliometric network diagram showing CHT-MOA relationships. 

 

2 COMPREHENSIVE REVIEW ON CONSTRAINT HANDLING STRATEGIES 

This section reviews the most popular and effective MOA CHSs in six categories: penalty-based CHSs, 

separation-of-objective-and-constraint CHSs, combination CHSs, repair-algorithm-based CHSs, 

boundary-based CHSs, and others. Table 1 lists all reviewed CHSs, their MOAs, and their literature 

reference numbers. 

2.1 Penalty-based constraint handling techniques 

Objective function penalisation is the oldest and most popular CHS. Static, dynamic, adaptive, 

and death penalty methods have been developed over time. Miettinen et al. (2003) tested five penalty-

based CHSs with genetic algorithms to solve 33 mathematical test problems of various types. The 
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adaptive penalty method (APM) was the most efficient and the parameter-free penalty method the most 

reliable. Nearly a decade later, Da Silva et al. (2011) proposed a parameter-free APM for use with 

DUVDE algorithm, a DE that uses Dynamic Use of Variants (DUV) to automatically select the best 

variant for structural and mechanical engineering applications. By using the feedback from the current 

candidate solution population to adaptively define the penalty factor for every constraint combined 

with DUV, this CHS made DE more efficient in solving COPs and achieved competitive results 

compared to GA and simple DE. 

Montemurro et al. (2013) applied automatic dynamic penalisation (ADP), a parameter-free 

penalty-based CHS, to engineering design problems like composite laminate first buckling load 

maximisation. The proposed CHS is combined with BIANCA, a multi-population genetic algorithm 

that uses crossover and mutation operators to evolve different species simultaneously. ADP uses the 

information of infeasible individuals to automatically select and update penalty factors, expanding the 

search space.  Li et al. (2019a) used a Kriging model in a dynamic surrogate-based optimisation 

(DSBO) of standard test functions and an engineering problem, using two sample selection criteria: 

maximisation of the expected improvement (EI) function and minimisation of surrogate model 

prediction. They handled constraint handling by constraining the EI function, penalising the surrogate 

model prediction, and penalising the objective function DSBO performed best in two tests and a beam 

optimisation problem using methods (a) and (b). 

In 2019, Kawachi et al. introduced LSHADE, a DE algorithm with an APM CHS that considers 

both the objective function value and the constraint violation in the search region, to optimise 

benchmark functions from the Congress on Evolutionary Computation (CEC) 2017. In most cases, the 

proposed method outperformed a conventional APM CHS and other CHSs by balancing constraint 

violation and objective function values. In 2019, Datta et al. proposed the constraint handling with 

individual penalty (CHIP) technique, which combines a common penalty-based CHS with the bi-

objective EA NSGA-II. Instead of using a global factor for the overall constraint violation, the method 

adaptively computes the penalty factors for each constraint using the overall constraint violation as an 

auxiliary objective function subject to minimisation. Constraint automatic normalisation and low 

computational demand are advantages of the proposed CHS. The EJADE-SP algorithm, developed by 

Li et al. (2020) for optimal power flow (OPF) problems, is an enhanced adaptive DE with a self-

adaptive penalty (SP)CHS and includes a strategy for dynamic population reduction, crossover rate 

(CR) sorting mechanism, CR re-randomization, and scale factor F parameters. This algorithm with an 

SP CHS performed similarly to simple DE with different CHSs. 

2.2 Techniques based on separation of objective and constraints 

Deb (2000) created a penalty-based CHS called feasibility rules for population-based 

algorithms like genetic or other EAs that uses tournament selection feasibility rules to compare pairs 

of individuals without penalty parameters. The proposed method eliminates the need for user penalty 

factor selection in penalty-based CHSs to find the best solution.  

Stochastic ranking (SR), a new CHS introduced by Runarsson and Yao (2000), uses a 

stochastic bubble-sort algorithm to balance objective and penalty functions and solves 13 benchmark 

problems using an evolution strategy. SR, like Deb (2000), eliminates user penalty factor selection.  

Coello and Mezura-Montes (2002) used the niched-pareto genetic algorithm (NPGA) for tournament 

selection in structural design optimisation problems. Nondomination is used in multi-objective 

problems. NPGA treat constraints as additional objective functions for single-objective COPs. The 

proposed method efficiently handles constraints without penalty functions and maintains population 

diversity without niching using the multiobjective concept. 

Wang et al. (2009) used a hybrid EA with two mutation operators and a simplex crossover 

operator to generate new offspring in 13 high-profile benchmark test problems. The algorithm uses an 

adaptive CHS that adapts to population status based on infeasible, semi-feasible, and feasible 

conditions. Simple implementation, increased robustness, and effectiveness are among the method's 

benefits. In Takahama and Sakai (2010), a DE algorithm with archive and gradient-based mutation 
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operator and ε-constrained CHS was successfully applied to 18 CEC2010 test problems. The proposed 

CHS uses automatic control parameter adjustment to relax constraints and retain useful information 

from infeasible individuals during the search process.  Mazhoud et al. (2013) used constraint violation 

with interval arithmetic (CVI) and a customised PSO algorithm in 24 benchmark mathematical and 3 

engineering optimisation problems. CVI uses interval arithmetic for total violation normalisation, a 

simple lexicographic method for solving subsequent problems, and the total constraint violation as an 

objective function subject to minimisation. 

Zhang et al. (2015) applied a new EA, backtracking search algorithm (BSA), to 13 benchmark 

functions and 4 engineering problems, incorporating feasibility rules and ε-constrained method with 

two ε value control methods. The ε-constrained CHS with self-adaptive ε control outperformed the 

other two CHSs in efficiency and convergence speed.  Chehouri et al. (2016) implemented a parameter-

free CHS for NLP problems using a GA. The approach uses the violation factor to divide the population 

into two families of feasible and infeasible solutions, with the latter containing individuals violating at 

least one constraint. For population evolution at each generation, the first family is sorted by fitness 

function value and the second by comparison rules. These rules compare two infeasible individuals by 

considering the number of violated constraints in addition to the constraints violation value.  

Peng et al. (2018) applied EAs and a biassed dynamic weight CHS to 24 CEC2006 and 18 

CEC2010 benchmark problems. Biassed weights select individuals with low objective and constraints 

violation values and dynamically adjust weights to focus on them. Since parents and children are closer 

to the feasible search space, the approach prioritises selecting infeasible individuals from them. When 

integrated into a DE algorithm, this CHS is stable, reliable, and competitive.  Fan et al. (2018) applied 

IEpsilon, an improved ε-constrained CHS, to DE algorithm LSHADE44 for 28 CEC2017 benchmark 

problems. IEpsilon differs from the traditional ε-constrained handling method by adapting the ε value 

to the proportion of feasible individuals in the population, balancing the search for feasible and 

infeasible space during evolution.  

In Rodrigues et al. (2018) proposed an alternative version of the balanced ranking CHS   

method, called Extended-BRM, and implemented it in evolutionary algorithms for application to 

CEC2006 and CEC2010 test functions and engineering problems. The proposed technique employs a 

self-adaptive mechanism to rank feasible and infeasible individuals in two separate groups, and later 

merges them during the search process with respect to the proportion of feasible and infeasible 

individuals in the current population. This CHS   requires no parameter adjustment by the user, 

produces the most feasible solutions, and achieves superior performance compared to other CHS s, 

such as stochastic ranking, adaptive penalty method, etc. Li et al. (2019b) optimised 24 benchmark 

test functions using EAs and FSB, a fuzzy knowledge-based CHS guided by a membership function. 

Fuzzy knowledge works by searching for candidate solutions with large constraints violation values 

leading to smaller constraints violation values and better objective function values. The FSB CHS in 

various EAs (DE, ES, GA, PSO, EP) outperformed penalty function, stochastic ranking, ε-constrained, 

and feasibility rules CHSs in terms of robustness and efficiency.  

Zhao et al. (2020) applied FROFI, a feasibility-rule-based CHS, to 2 test problems and 2 reservoir 

models using a radial basis function (RBF) surrogate-assisted DE algorithm. FROFI integrates 

objective function information through DE algorithm operators and a replacement procedure into the 

well-known Deb rules to improve objective function-constraint balance. Liu et al. (2020) integrated an 

improved Deb rule called IDeb into a Fruit fly optimisation algorithm (FOA) (a search strategy based 

on memory, inspired by fruit flies' foraging behaviour) to optimise truss structures. The method uses 

the classic Deb rule to identify feasible individuals in the solutions memory size and then evaluates 

the constraints violation only of those with better objective function values than the worst one stored 

in memory. Since constraints violation evaluations are more computationally expensive than objective 

function evaluations, the IDeb CHS can significantly reduce structural analysis computational demand. 

  Chu et al. (2020) used a DE algorithm with an ε-constraint CHS to optimise polyline-based 

core sandwich structures (PCSSs) topology. The dominant volume constraint is approximated by the 
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RBF surrogate model for low computational cost, then handled by the EC method to compare different 

infeasible solutions, resulting in more effective search space exploration and reduced RBF prediction 

model errors. 

A metaheuristic search and rescue (SAR) optimisation algorithm by Shabani et al. (2020) 

simulates rescuer behaviour. Combining SAR with ε-constrained CHS led to high performance in 

benchmark test functions and 7 engineering problems. Stanovov et al. (2020) optimise benchmark 

functions and economic load dispatch problems using ε-constraint CHS variations and a DE algorithm. 

The combined fitness-ε vector length with individual penalty levels (ECIFL) variant outperformed 

classical ε-constraint CHS, proposed variants, and Iepsilon method when considering constraints 

violation, objective function values, and each constraint individually. For doubly fed induction 

generator design optimisation, Rodrigues et al. (2020) proposed a PSO-based algorithm with a 

weighted dynamic objective constraint handling method (WDOCHM-PSO). This method divides the 

constrained problem into two unconstrained objective functions: one considers the distance of 

infeasible individuals from the feasible region (violation); the other considers the optimisation problem 

without constraints and is used only for feasible individuals. Mao et al. (2019) used the SR CHS in 

shuffled complex evolution (SCE), an optimisation algorithm that combines the competitive complex 

evolution (CCE) algorithm with the simplex method to solve constrained reservoir scheduling 

problems. The SR CHS is efficient in identifying feasible solutions, even in the early stages of 

optimisation, and its integration into SCE creates a robust algorithm that can quickly find feasible 

regions.  

2.3 Combination of constraint handling techniques 

Recently, optimising with multiple CHSs has become popular. Mallipeddi and Suganthan 

(2010) combined CHSs (feasibility rules, self-adaptive penalty, ε-constraint method, stochastic 

ranking) with EP and DE algorithms for COPs. Each CHS represents a different population, and each 

parent is compared to all population children. A combination of CHSs outperformed individual ones.  

In a Unified Differential Evolution (UDE) algorithm, Trivedi et al. (2017) optimised 28 CEC 2017 test 

problems using the penalty method and feasibility rules CHS s. The proposed approach penalises the 

first half of maximum allowed function evaluations for efficient search space exploration and 

feasibility rules for the other half for efficient exploitation. 

Biswas et al. (2018) used a DE algorithm, a self-adaptive penalty CHS, and a feasibility rules 

CHS to evaluate standard IEEE 30 57- and 118-bus systems for OPF objective functions like cost, 

emission, voltage stability, etc. Combinations of CHSs outperformed individual ones in most cases.  

Malan (2018) optimised 18 CEC2010 test problems using a DE algorithm and landscape-aware 

constraint handling. The landscape-aware approach switches between four CHSs based on the 

landscape characteristics gathered during the search process, with only one CHS active at a time, unlike 

the well-known ensemble of CHSs.  Wang et al. (2019) optimise CEC2017 test problems using 

DEVNS, a DE algorithm variant with two mutation strategies and random crossover and mutation 

values. They also use feasibility rules and ε-constrained CHSs. In the proposed method, feasibility 

rules are used to compare trial and target individuals. Individuals with lower constraint violations than 

the specified ε level are considered feasible. Thus, constraints are relaxed, improving search efficiency. 

  Javed et al. (2019) optimised 24 CEC2006 benchmark problems using JADE and SADE 

algorithms, including feasibility rules, self-adaptive penalty, ε-constrained, and stochastic ranking 

CHSs. Both algorithms had a competitive feasibility rate but a lower success rate than other algorithms 

using a single CHS based on CEC2006 evaluation criteria.  

Kaucic et al. (2020) introduced IC-PSO, a PSO-based algorithm for numerical optimisation problems, 

and a hybrid CHS with Deb rules and a correction mechanism. The proposed CHS uses a suitable 

operator to repair infeasible individuals and applies feasibility rules to accelerate PSO algorithm 

convergence to feasible regions.  

2.4 Repair algorithm-based constraint handling techniques 
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Repair algorithms (typically heuristics) are used to fix infeasible individuals and make them 

feasible in COP solutions. Repaired individuals can be used only for fitness function evaluation or to 

replace the initial individual in the next generation during evolution. The developer's decision to 

replace the original individual with the repaired one, a small percentage, or every infeasible individual 

in the population during evolution depends on the problem.  

Chootinan and Chen (2006) solved 11 optimisation test problems using a constraint gradient-based 

repair mechanism in a simple GA. Constraint gradient information is obtained via approximate finite 

differences or direct derivatives of constraints to guide infeasible individuals into the feasible search 

space. The user only needs to adjust the repair probability parameter, and the CHS performs similarly 

to stochastic ranking.  Salcedo-Sanz (2009) surveys the main EA repair heuristics for COP 

performance. Zein et al. (2017) used a GA-integrated repair operator for composite structure 

preliminary design. While the inner loop solves the problem using the GA and surrogate models, the 

outer loop reconstructs the surrogate model using the optimal surrogate solution. The proposed method 

balances accuracy and computational demand.  

Li et al. (2018) modified PSO and DE algorithms to handle equality constraints on Economic 

Dispatch problems using six test generators. The repair technique evaluates the objective function 

derivative and incrementally adjusts unit output by sharing the unbalanced system constraint violation. 

CHS is efficient, especially for large power systems.  

In 2020, Gandomi and Deb implemented the boundary update (BU) CHS in EAs and mathematical 

algorithms and tested it in engineering and mathematical optimisation problems. BU restricts and 

changes variable limits during optimisation to avoid constraints violation, generating solutions within 

the search space with "updated" limits. The BU method solves complex COPs well despite requiring 

constraint variables pre-categorizing.  

2.5 Boundary-based constraint handling techniques 

Expression (1) has function and bound constraints. Function constraints include inequality or 

equality functional forms of decision variables, while bound constraints enforce upper and lower 

bounds. Most research has focused on CHSs for function constraint handling, but a few has tackled 

boundary constraint handling methods. BCHMs reset infeasible variable solution vectors in the search 

space and make them feasible.  

Gandomi and Yang (2012) compare an evolutionary boundary constraint handling (EBCH) 

scheme integrated into DE with other boundary-based methods using several test problems. In the 

proposed method, components that violate bounds are replaced by a random component between the 

bound and the current best solution. The proposed scheme outperforms absorbing, toroidal, reflecting, 

and random BCHMs in most cases.  Gandomi and Kashani (2018) optimised 7 benchmark test 

functions using PEBCH and PSO. The boundaries violation quantity is considered in PEBCH, a 

probabilistic version of EBCH (Gandomi and Yang 2012). A probability distribution function is used, 

with higher density near the violated boundary.  Mozaffari et al. (2019) examine the effects of chaotic 

maps on evolutionary algorithms (EAs). To handle boundary constraints, a controlling formula is used 

to correct a violated solution position into acceptable solution limits, enhancing global search and 

preventing early convergence.  

Biedrzycki et al. (2019) used CEC2017 benchmark functions to evaluate seven DE algorithms 

and seventeen BCHMs, finding that DE algorithm efficiency depends on the BCHM.  Juárez-Castillo 

et al. (2019) optimised sixty single-objective COPs using an adaptive BCH scheme in PSO and DE 

algorithms. Unless the population is entirely infeasible, the adaptive approach randomly selects a 

BCHM from a predefined set based on a dynamically updated probability. This adaptive scheme 

outperformed single BCHMs in COPs with moderate or large variables or constraints and in COPs 

where identifying feasible individuals is difficult.  Arouri and Sayyafzadeh (2020) developed a 

gradient-based algorithm for production optimisation using simultaneous perturbation stochastic 

approximation (SPSA) and adaptive moment estimation. After testing the algorithm with projection 

and logarithmic transformation BCHMs, the former performed better.  
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In 2020, Biedrzycki et al. evaluated the covariance matrix adaptation evolution strategy (CMA-

ES) algorithm for optimising unimodal and multimodal CEC2017 and Black-Box Optimisation 

Benchmarking (BBOB) problems using 22BCHMs categorised as repair, feasibility preserving, 

specialised, and penalty functions. Darwinian reflection and resampling performed best among 

BCHMs. 

2.6 Other constraint handling techniques 

In Evolution Strategies for optimising sphere and ellipsoid functions with linear constraints, 

Atamna et al. (2020) used an augmented Lagrangian approach as CHS to convert the initial constrained 

objective function into an unconstrained one and use its parameters during optimisation.  In 2020, Qian 

et al. used a GA and surrogate model to solve 9 numerical and 2 engineering optimisation problems 

using the Kriging surrogate prediction model instead of the actual constraints, which is updated during 

optimisation to avoid infeasible solutions. It yields optimal feasible solutions and requires less 

computational power than other methods.  

Rosso et al. (2021) introduced a non-penalty-based constraint handling approach for PSO algorithms 

using SVM, a supervised classification machine learning method. A simple bisection algorithm was 

implemented to preserve population feasibility while constraint handling with SVM appears more 

adaptive to nonlinear and discontinuous boundaries due to its generality.  Rosso et al. (2022) developed 

Particle Swarm Optimisation (PSO) to solve constrained problems using a twist on the classical penalty 

function technique. Current implementation includes state-of-the-art improvements and suggestions 

(inertia weight, neighbourhood). To localise the feasible region in difficult optimisation problems, a 

new local search operator was added.This operator hybridises with the Evolutionary Strategy, another 

milestone meta-heuristic algorithm. The self-adaptive variant is used because it doesn't require tuning 

any other parameter.  

Table 2: Comparative Performance of discussed CHS in literature review 

Technique Strength Weakness Best Suited For 

Penalty-Based Simple, adaptable to 

various problems 

Requires parameter 

tuning 

General-purpose 

problems 

Feasibility Rules Clear decision-making 

process 

May bias towards 

feasibility prematurely 

Problems with hard 

constraints 

ε-Constrained Balances exploration 

and exploitation 

Parameter sensitivity Dynamic or multi-

modal problems 

Stochastic Ranking Avoids over-reliance 

on penalties 

Computationally 

intensive 

Complex constraint 

landscapes 

Repair Algorithms Directly addresses 

feasibility 

Problem-specific Engineering and 

structural 

optimization 

Boundary-Based Efficient for bound-

constrained problems 

Limited applicability Simple bound-

dominant problems 

Hybrid and 

Ensemble Methods 

Combines strengths of 

multiple techniques 

High computational 

demand 

Complex and multi-

modal optimization 

In given table 2 shows various CHSs comparative performance, Although penalty-based 

methods and feasibility rules are simple and easy to implement, ε-constrained and stochastic ranking 

techniques excel in dynamics and complexity. Hybrid methods combine the strengths of individual 

methods, offering promise. Repair and boundary-based methods provide domain-specific solutions for 

real-world applications. 

3 CONSTRAINT HANDLING STRATEGY FORMULATION 

This section discusses four commonly used CHSs in the literature: penalty methods, feasibility rules, 

ε-constrained method, and stochastic ranking. A brief description of ensemble-based methods is also 

provided. Additionally, Kawachi et al. (2019) introduced adaptive penalty, Deb (2000) feasibility 



[ 

 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 54, Issue 3, No.1, March : 2025 
 

UGC CARE Group-1                                                                                                                       99 

rules, Fan et al. (2018) improved ε-constrained, and Runarsson and Yao (2000) stochastic ranking 

innovations. 

3.1 Penalty methods 

A penalty term to the objective function makes a constrained problem unconstrained in penalty 

methods. Penalty factors and constraint function violations determine the penalty term, which can 

change during optimisation. General form of penalised objective function (Coello and Montes 2002): 

 
where F(x) is the penalized objective function (also called fitness function), gj (x) and hk (x) are the 

inequality and equality constraints, respectively, and rj and ck are positive weight coefficients called 

penalty factors. Converting the equality into inequality constraints, as previously discussed in Sect. 1, 

Eq. (2) can be rewritten as: 

 
Kawachi et al. (2019) proposed an adaptive penalty factor calculation method during evolution to avoid 

over- or under-penalization that could diverge the search process from the optimal. More specifically, 

a fitness function is created: where υ(x) is the mean constraint violation and PF is the penalty factor, 

and subsequently three steps are implemented. First the penalty factor candidates (PFCs) are calculated 

by comparing two individuals as follows: 

 
where subscripts k and l denote two distinct individuals; PFC is calculated for all possible 

combinations in a given population. In the second step, the penalty factor (PF) is defined, as follows: 

if the percentage of negative PFCs exceeds 50%, the PF remains the same with the one of the previous 

generations; otherwise PF is calculated as the average value of the positive PFCs. In the third step PF 

is updated. If the proportion of feasible individuals r f in the population exceeds the pfeas, then the 

penalty factor of the next generation is obtained as follows in equation (6); where prate ∈ [0, 1] and pfeas 

are user defined parameters. 

 
3.2 Feasibility rules 

In penalty methods, different penalty factor values must be tested to determine the best option because 

inappropriate values can diverge the search process from the optimal solution. Deb (2000) proposed a 

tournament selection operator-based method for comparing two solutions based on the following 

criteria: (i) any feasible solution is preferred to any infeasible solution; (ii) the feasible solution with 

the better objective function value is preferred; and (iii) the infeasible solution with the smaller 

constraint violation value is preferred. 

3.2.1 Original feasibility rules technique 

According to the original feasibility rules technique, the fitness function is defined as follows: 

 
where fmax is the objective function value for the worst feasible solution of the current population. If 

no feasible solution exists in a population, fmax is set to zero. According to this technique, all constraint 
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violations are summed, and this sum is compared as a single value. Therefore, in case of infeasible 

solutions, these are compared based solely on the level of constraint violation. 

3.2.2 Innovative solution of the feasibility rules technique 

This section presents four novel feasibility rules solutions. To explore the design space globally, the 

comparison rules for the original technique have been modified to bias the search towards better 

feasible solutions rather than just feasible ones. The proposed variants assume that a small constraint 

violation should not be the sole criterion for selecting one individual over another, as in existing 

techniques.  In particular, when comparing two infeasible individuals, the objective function value, 

number of violated constraint functions, and maximum constraint violation value should be 

considered, and the product of these three entities will determine the winner: if an individual has a 

lower constraint violation than another, but its objective function value is much higher, maintaining 

the f. Naturally, the second individual will be penalised more if it violates constraint very strongly. 

The lower bound is the objective function value of the best feasible individual found so far to avoid 

very small values that could misdirect the search. The product of an individual's objective function 

value and constraint violation level can be used to choose either feasible or infeasible. Selecting the 

feasible solution may lead to a local optimum, so the infeasible individual should be preferred if its 

objective function value is very low. Finally, the total number of violated constraint functions and the 

maximum constraint violation are considered since it is unclear which is better between a solution with 

many small violations and one very large violation. After considering the above, the new variants are 

formulated. Check and verify. Confirm Pviolation factor is used to calculate infeasible individual fitness 

function. The individual's normalised maximum constraint violation is multiplied by a term related to 

the relative number of violated constraint functions for a solution over the total number of constraint 

functions, depending on the variant. Each of the four variants has a Pviolation factor:  

 

 
 

where gj (x) is the normalised value of the jth constraint (an example of a normalised constraint is shown 

below in Eq. 9b), nconstviol is the number of violated constraint functions and nconst is the total number 

of constraint functions. The fitness function of an individual is calculated as the product of pviolation 

with the maximum among the objective function value of the individual and the best objective function 

value of the feasible individuals found so far, as stated in the following expression: 
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where an example of a constraint function is shown in Eq. (9b), where σ(x) is the principal stress 

developed into a specific structural element and σall is the corresponding allowable value. Three criteria 

are used to compare two solutions using expression (9b): (i) between two feasible solutions, the one 

with the better objective function value is preferred; (ii) between two infeasible solutions, the one with 

lower constraint violation and fewer violated constraint functions is preferred; and (iii) between one 

feasible and one infeasible solution, the feasible solution is selected based on its objective function 

value, constraint violation level, and number of violated constraints. In maximisation problems, criteria 

are adjusted. 

3.3 ε-constrained method 

A modified version of the feasibility rules technique was originally proposed by Takahama and Sakai 

(2005), with the aim of providing comparison rules on constrained optimization problems during the 

evolutionary process. According to this technique, the overall constraint violation function ϕ(x) is 

defined as either the maximum or the sum of all constraints, and is used in conjunction with the ε level 

comparison {< ε}; for any ε  ≥ 0, an individual ( f1, ϕ1) is considered better than another individual ( 

f2, ϕ2)  according to the following comparison rules: 

 
Therefore: (a) if both overall constraint violations ϕ(x) of two individuals are either less than or equal 

to ε, the one with better objective function value f is preferred; (b) If the overall constraint violations 

ϕ(x) of two individuals are equal, the one with better objective function value f is preferred; and (c) if 

either or both constraint violations ϕ(x) of two individuals are larger than ε, the one with lower 

constraint violation ϕ(x) is preferred. Building upon their previous work, Takahama and Sakai (2010) 

suggested that the ε level can be usually controlled according to the following expression: 

 
where the initial ε level is equal to ϕθ , that is the constraint violation of the top θth individual in the 

initial population, t is the number of iterations, TC is the control generation and cp is a user defined 

parameter with value greater or equal to 3. 

 3.3.1 Improved ε-constrained method 

In Fan et al. (2018) proposed the following improved ε setting approach, which applies the ε level 

comparison {< ε} to establish comparison during the evolutionary process, and further balance the 

evolutionary search of the population between feasible and infeasible regions: 
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where rk is the proportion of feasible solutions (PFS) in the generation; ϕθ is the θth largest overall 

constraint violation of all individuals in the initial population (sorted in an array by their overall 

constraint violation), where θ = γ*Npop, Npop being the population size and γ ∈ [0.2, 0.8]; ϕmax is the 

largest overall constraint violation of all individuals; TC is the termination function evaluations (FEs), 

where TC ∈ [0.1maxFEs, 0.8maxFEs]; and cp ∈ [2, 10], τ ∈ [0, 1] and α ∈ [0, 1] are user-defined 

parameters. 

3.3.2 New variants of the ε-Constrained method 

Analogously to the new feasibility rules variants introduced previously in Sect. 3.2.2, new variants of 

the ε-constrained technique are also proposed herein. The ε level comparison {< ε} in the new variants 

for two individuals 1, 2 is defined via the following four rules: 

 
where fbf stands for the objective function value of the best feasible individual found so far, and p1, p2 

denote the value of the pviolation factor calculated for individuals 1 and 2, based upon Eqs. (8a) to (8d). 

If two individuals have maximum constraint violations less than or equal to ε level, the one with better 

objective function value f is preferred. If they are equal, the one with better objective function value f 

is preferred. If both are greater than ε level, the one with better product of constraint violations is 

preferred. New feasibility rules techniques consider the maximum constraint violation value and the 

total number of violated constraint functions. Eq. (12) is used to control the ε level, following Fan et 

al. (2018) formulation. 

3.4 Stochastic ranking method 

Stochastic ranking, proposed by Runarsson and Yao (2000), is a popular CHS that avoids 

penalty techniques. Comparing adjacent individuals in a population by penalty and objective function 

dominance ranks them from best to worst in stochastic ranking. Designers must define a probability Pf 

∈ [0, 1] for using the objective function exclusively for adjacent comparisons to improve performance. 

Pf = 1/2 means the objective function and penalty function comparison probabilities are equal. A 

bubble-sort algorithm ranks individuals by comparing adjacent individuals in N sweeps (the least λ 

sweeps) in each generation. If both adjacent individuals are feasible or a randomly generated number 

u is less than the selected probability Pf, their objective function values are compared. If one or both 

are infeasible, the constraint violation value is used. If the ranking order does not change within a 

sweep, the algorithm stops. 

3.5 Ensemble of constraint handling techniques 

It can be difficult to determine which CHS is best for COP global optimisation. A CHS may 

be better for one stage of evolution but not another, so different CHSs may be more effective at 

different stages of the search. This depends on the problem's multimodality, the search region's 

feasibility, the algorithm, etc. Mallipeddi and Suganthan (2010) proposed ECHS, a scheme combining 

four CHSs (feasibility rules, self-adaptive penalty, ε-constraint method, and stochastic ranking) to 

explore constrained optimisation problems, each focussing on a distinct population. The population's 

parents and offspring compete with each other and all other populations. This means that if an offspring 
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from a population is not selected for the next generation based on its CHS, other populations that use 

a different CHS may select it.  

 4. CONCLUSIONS 

A comprehensive state-of-the-art review of almost 60 CHS variants for MOAs to solve multi-

objective COPs is presented in this paper. Metaheuristic optimisation algorithms (MOAs) for 

constrained optimisation problems (COPs) require constraint handling techniques (CHTs). This review 

extensively examined CHT methods, benefits, drawbacks, and applications. Techniques like penalty-

based, feasibility rules, ε-constrained, repair-based, and boundary-based strategies were examined, 

along with hybrid and ensemble approaches. Due to their simplicity and adaptability, penalty-based 

methods are still popular. Dynamic penalty adjustments, like those by Kawachi et al. (2019), reduce 

over-penalization and improve convergence. Introduced by Deb (2000), feasibility rules and improved 

ε-constrained methods by Fan et al. (2018) eliminate penalty factor tuning. They optimise search 

efficiency by prioritising constraint violation and objective performance. Mallipeddi and Suganthan 

(2010)'s hybrid and ensemble approaches use multiple CHTs to dynamically adapt to problem 

characteristics, improving performance in diverse scenarios. Repair algorithms accurately turn 

infeasible engineering solutions into feasible ones. Boundary-based methods efficiently handle 

variable limits and incorporate probabilistic adjustments for robustness. However, these methods have 

limitations. Due to parameter tuning or integration complexities, penalty-based and hybrid methods 

have high computational overhead. Scalability is another issue because some CHTs are less effective 

in high-dimensional or constrained problem spaces. No universal CHT guarantees optimal 

performance across diverse applications, so a problem-specific approach is needed. CHT selection 

should match the problem and computational resources for effective application. Exploration and 

exploitation are best balanced by adaptive and ensemble methods. Dynamic updates improve 

adaptability of penalty methods, which are reliable for well-defined constraints. In strict feasibility 

scenarios like structural design optimisations, repair algorithms should be considered. Ensemble 

approaches that combine adaptive penalty methods, feasibility rules, and repair-based techniques are 

best for robust constraint handling in MOAs, according to the review. These methods use CHT 

strengths and mitigate weaknesses to adapt to the problem landscape. Ensembles provide versatile and 

effective COP solutions across domains by combining adaptability, robustness, and computational 

efficiency. This comprehensive CHT synthesis offers insights and actionable recommendations to help 

practitioners solve complex optimisation problems. 

Table 2: List of Abbreviations used in proposed article 

Abbreviation Full Form 

COP Constraint optimization problem 

NLP Non-linear programming 

CHS   Constraint handling technique 

EA Evolutionary algorithm 

DE Differential evolution 

ORPD Optimal reactive power dispatch 

SA-DECV Surrogate-assisted differential evolution with combined variants 

DCOPs Dynamic constrained optimization problems 

PBA Pity beetle algorithm 

OCP Optimization computing platform 

HP-OCP High-performance optimization computing platform 

APM Adaptive penalty method 

ADP Automatic dynamic penalization 

DSBO Dynamic surrogate-based optimization 

EI Expected improvement 

CHIP Constraint handling with individual penalty 
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OPF Optimal power flow 

SR Stochastic ranking 

NPGA Niched-pareto genetic algorithm 

CVI Constraint violation with interval arithmetic 

BSA Backtracking search algorithm 

FOA Fruit fly optimization algorithm 

SAR Search and Rescue optimization algorithm 

WDOCHM-

PSO 

PSO-based algorithm combined with dynamic objective constraint handling 

method 

DFIG Doubly fed induction generator 

SCE Shuffled complex evolution 

CCE Competitive complex evolution 

EP Evolutionary programming 

FS Feasible solutions 

SPSA Simultaneous perturbation stochastic approximation 

CMA-ES Covariance matrix adaptation evolution strategy 

MOA Metaheuristic optimization algorithm 

RST Random sampling technique 
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