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Abstract 

Plant diseases present significant challenges to agricultural productivity, necessitating timely 

identification and intervention. This paper proposes a Convolutional Neural Network (CNN)-based 

model for disease classification in rice, wheat, and maize plants, implemented in MATLAB R2021a. 

The dataset comprises images of both diseased and healthy leaves from the three crops. The CNN 

architecture incorporates convolutional layers, batch normalization, and pooling layers, aiming for 

efficiency and effectiveness. A split dataset facilitates training and evaluation, with real-time disease 

classification enabled using user-provided leaf images. Performance metrics including accuracy, 

precision, recall, and F1 score showcase the model's efficacy in detecting and identifying diseases 

across diverse crop types. This unified approach offers a promising avenue for automated plant disease 

management, enhancing precision and outperforming existing methods. 
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I. Introduction 

Plant diseases continue to be a significant threat to global food security, causing substantial losses 

in agricultural production annually [1]. Plant diseases have a negative impact on agricultural 

productivity, quality, and economic stability, posing a serious threat to world food security. If diseases 

in important cereal crops like rice, wheat, and maize are not properly treated, they can cause large 

losses. In order to minimize losses and guarantee long-term agricultural practices, early diagnosis and 

accurate identification of plant diseases are crucial for the adoption of suitable remedies, such as crop 

management techniques or targeted pesticide application. Conventional disease diagnosis techniques 

often depend on visual inspections by agronomists or laboratory-based analysis, both of which can be 

labor-intensive, subjective, and time-consuming. Modern technology has advanced, particularly in the 

areas of computer vision and machine learning, and as a result, automated techniques for identifying 

plant diseases have emerged as strong substitutes for antiquated procedures. 

Timely and accurate identification of these diseases is crucial for implementing effective 

intervention strategies [2]. Traditional methods of disease diagnosis often rely on visual inspection by 

trained experts, which can be time-consuming and subjective [3]. Recent advancements in computer 

vision and machine learning have provided new opportunities for automating the process of disease 

identification in plants [4]. Convolutional Neural Networks (CNNs) have emerged as powerful tools 

for image classification tasks, demonstrating promising results in various domains, including 

agriculture [5]. 

In this study, we propose a CNN-based model for the classification of plant diseases in rice, wheat, 

and maize crops. The model is implemented using MATLAB R2021a, leveraging its extensive toolbox 

for image processing and machine learning [6]. The dataset comprises a diverse collection of images, 

encompassing both diseased and healthy leaves from each crop species. The proposed CNN 

architecture is designed to be both efficient and effective, incorporating convolutional layers, batch 

normalization, and pooling layers [7]. A split dataset strategy is employed for training and evaluation, 

ensuring robust performance across different scenarios [8]. Real-time disease classification 

capabilities are demonstrated, allowing users to input leaf images for immediate diagnosis. 
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Performance evaluation metrics, including accuracy, precision, recall, and F1 score, are employed to 

assess the model's effectiveness in disease detection and classification [9]. 

Overall, this research presents a unified approach to automated plant disease classification, offering 

a viable solution for enhancing precision and efficiency in disease management across multiple crop 

types. 

 

II. Related Work 

In recent years, researchers have focused heavily on the development of automated systems for 

detecting and identifying plant diseases. Several technologies, including standard image processing 

techniques and machine learning algorithms, have been investigated to address this critical agricultural 

concern. This section examines several key studies and approaches in the subject of plant disease 

classification.  

Global Burden of Pathogens and Pests 

Savary et al. [1] conducted a comprehensive study on the global impact of pathogens and pests 

on major food crops, highlighting the critical need for effective plant disease management strategies. 

This study underscores the economic and food security implications of crop diseases on a global scale. 

Plant Immune System 

Jones and Dangl et al. [2] detailed the complex mechanisms of the plant immune system, which 

plays a crucial role in the defense against pathogens. Their work lays the foundation for understanding 

how plants naturally resist diseases, which is essential for developing artificial intelligence models for 

disease detection. 

Deep Learning Techniques 

Krizhevsky et al. [5] introduced deep convolutional neural networks (CNNs) for image classification, 

which has become a cornerstone method for plant disease detection. Their work demonstrated the 

potential of CNNs in achieving high accuracy in image-based classification tasks. Ioffe and Szegedy 

et al. [7] proposed batch normalization, a technique that significantly improves the training speed and 

stability of deep neural networks, further enhancing the performance of deep learning models used in 

plant disease detection . 

Image-Based Plant Disease Detection 

Mohanty, Hughes, and Salathé et al. [11] applied deep learning to image-based plant disease 

detection, showing that CNNs can effectively identify various plant diseases from images with high 

accuracy. Their work is pivotal in demonstrating the practical application of deep learning in 

agriculture. Ferentinos et al. [12] developed and tested several deep learning models for plant disease 

detection and diagnosis, showing that these models can achieve high accuracy across different plant 

species and diseases. Sladojevic et al. [13] utilized deep neural networks for recognizing plant diseases 

by leaf image classification, contributing to the development of automated and efficient disease 

detection systems. 

Impact of Dataset Size and Variety 

Barbedo et al.  [10] investigated the effects of dataset size and variety on the effectiveness of 

deep learning and transfer learning for plant disease classification. This study emphasizes the 

importance of diverse and extensive datasets in training robust deep learning models. 

Visual Inspection Using CNNs 

Ghorbani et al. [3] explored the use of convolutional neural networks for visual inspection of plant 

diseases, demonstrating the practical applications of deep learning in real-time disease monitoring and 

management. 

Deep Learning for Plant Stress Phenotyping 

Singh et al. [17] reviewed the trends and future perspectives of deep learning for plant stress 

phenotyping, providing insights into how deep learning can be leveraged to assess and manage plant 

stress conditions. Ghosal et al. [14] proposed an explainable deep machine vision framework for plant 

stress phenotyping, highlighting the importance of transparency and interpretability in deep learning 
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models for practical agricultural applications. Awada et al. [15] discussed the trends and future 

perspectives of using deep learning for plant stress phenotyping, emphasizing the potential for 

improving crop management and yield prediction through advanced phenotyping techniques. 

Transfer Learning for Plant Disease Recognition 

Hu et al. [16] applied convolutional neural networks with pairwise CNN-based transfer 

learning for plant disease recognition from images, demonstrating the effectiveness of transfer learning 

in enhancing the performance of deep learning models on small datasets . 

These studies collectively advance the field of plant disease detection and stress phenotyping, 

leveraging deep learning techniques to develop more accurate, efficient, and scalable solutions for 

agricultural challenges. 

 

III. Proposed Method 

The recommended CNN model for diagnosing illnesses in wheat, rice, and maize is displayed 

in Figure 1. The approach uses equal-strength filters of varying sizes to extract salient features from 

photos. The model can manage different target sizes in different photos thanks to these filters. Three 

building pieces make up the suggested model (Figure 1); while they all have identical designs, the 

filter widths for convolutions at the same level vary. With input fields denoting input size and output 

fields denoting output size following operation, each cell in Figure 1 represents a single layer of the 

neural network.  

 
Fig1. Proposed Architecture of CNN Model 

Data flow between rows is shown by directed arrows. Three building components receive input 

from the Input Layer, which is subsequently fed into the proposed model. These building blocks are 

composed of a GlobalMaxPooling2D layer, a depth-wise separable convolution layer (Separable 

Conv2D), and two convolution layers (Conv2D). Their architecture is the same.  

Image Augmentation  

The collection's images are different in size. In order to undertake model training and testing, 

CNN models scale all images to the appropriate dataset image sizes and assume uniform input sizes. 

In addition, rescaling is used to bring the pixel values of the photos within the range [0, 1]. 

Input Layer: 

The input layer accepts RGB images of plant leaves as input. The size of the input layer is 

determined by the dimensions of the input images (height, width, and number of channels). 
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Convolutional Layers: 

 
Fig2. Convolution Operation 

By applying a series of learnable filters, or kernels, to the input image, convolutional layers 

extract features from the image. Different features, such as edges, textures, or patterns, are detected by 

each filter. Two parameters that can be changed are the quantity and size of the filters. To guarantee 

that the feature maps' spatial dimensions don't change, padding is used. The filter action in the proposed 

model's single convolution layer is depicted in Figure 2. Equation 1 illustrates how the basic building 

element of the model convolutional employs three filters. This filter is used by the 3 x 3 image patch 

to achieve dot product, as seen in Figure 2. A matrix produced by the convolution method is used as 

the feature map. Feature maps with 5 x 5 and 7 x 7 filter sizes are extracted by the convolution layers 

in Blocks 2 and 3, respectively. Convolutional Neural Network (CNN) architecture is used in the 

suggested methodology to identify and detect diseases in rice, wheat, and maize plants. In the 

architecture, each layer has a distinct function related to abstraction, categorization, and feature 

extraction. Let's dissect the process into its component parts: 

By normalizing the activations of the preceding layer, the Batch Normalization Layer increases 

training speed and stability. It shifts and scales normalized activations to reduce internal covariate 

shift.  

Through the use of the rectified linear activation function, the Rectified Linear Unit (ReLU) Layer 

introduces non-linearity into the network. The network may discover intricate connections and patterns 

in the data thanks to ReLU. Sample feature maps are layered down by max pooling by reducing their 

spatial dimensions and By employing strides effectively, pooling reduces the computational 

complexity of the input model while assisting in capturing the most pertinent information of the 

derived features. Programmable settings control the pooling operation's size and stride. Features 

obtained from convolutional layers are used by fully connected layers for classification. Every neuron 

in the layer above is connected to every other neuron in the completely connected layer. The number 

of classes (disease categories) in the dataset is equivalent to the number of neurons in the output layer.  

The softmax layer translates the previous layer's raw scores into class probabilities. It assures 

that the sum of probability for all classes equals one. Softmax is frequently utilized as the output layer 

in classification tasks. The classification layer assigns a label to the input image using the class 

probabilities acquired from the softmax layer. It determines the projected class for the input image.  

This CNN architecture is trained on labeled data (images of damaged and healthy leaves) to learn 

the distinguishing properties of each class of plant disease. The trained model may then be used to 

accurately classify unseen photos and detect diseases in rice, wheat, and maize plants. 

 

IV. Results Discussion 

Evaluation Metric: 

  This study examines 12 different illnesses and healthy classes of maize, rice, and wheat crops. 

As a result, multi-class classification is done, and the confusion matrix is utilized to generate several 

classification examples such as True Positive (TP), False Positive (FP), True Negative (TN), and False 

Negative (FN). In terms of multi-class picture classification, these can be read as follows: 

 •True Positive (TP): Images correctly sorted into each relevant category. 
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 • False Positive (FP): Images from relevant categories wrongly classified as non-relevant.  

• True Negative (TN): Images correctly classified under all categories except relevant ones.  

• False Negative (FN): Images of non-relevant categories are wrongly categorized as relevant 

categories. These instances are utilized to determine the performance metrics as shown in Equations 

(1)-(4). For Class C, 

      1 

      2 

     3 

      4 

By counting the number of predicted photos that genuinely fall into the appropriate category, 

Equation (1) calculates the model's accuracy. Recall in Equation (2) is the quantity of images that the 

model correctly predicts for the given class. Equation (3) illustrates how to construct the F1-Score as 

the harmonic mean of recall and precision. The accuracy is expressed as the ratio of correctly predicted 

observations to total observations in equation (4). 

 

Training Specifications: 

Using categorical cross-entropy as a loss function—a function that calculates the difference 

between two probability distributions—all models are trained in a supervised manner. A 0.001 learning 

rate Adam optimizer is employed. The effectiveness of the proposed lightweight CNN model for 

disease classification in maize, rice, and wheat plants is assessed through extensive comparative tests. 

The obtained results are discussed in this section.  

 
Fig3. Training Progress for Rice leaf Dataset 
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Fig4.Training Progress for Corn leaf Dataset 

 

 
Fig5. Training Progress for Wheat leaf Dataset 

 

Classification Results for the Proposed Model 

This section evaluates the suggested framework for disease detection in Corn, Rice, and Wheat. 

It considers three scenarios:  

(i) Identifying healthy VS infected categories for each crop,  

(ii) identifying different diseases for each crop individually, and  

(iii) Classifying healthy and diseased categories for Corn, Rice, and Wheat as a whole. 

 
a) Rice b) Corn c) Wheat 

Fig6.  Input Leaf Images 
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a)Rice 

 
 

b) Corn 

 
b) Wheat 

Fig7. Classified Output 

 
Fig8. Final Message Box after scucessful completeion of training and testing the model 

For Rice 

Test accuracy: 100% 

Confusion Matrix: 

    64     0     0     0 

     0    64     0     0 

     0     0    50     0 

     0     0     0    64 

Precision :     1     1     1     1 

Recall  :    1     1     1     1 

F1 Score :     1     1     1     1 

For Corn 

Test accuracy : 99.2481% 

Confusion Matrix : 

  276     0     0     0 

   0   240     0     0 

    7     1   252     0 

    0     0     0   288 

Precision :     0.9753    0.9959    1.0000    1.0000 

Recall  :  1.0000      1.0000    0.9692    1.0000 
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F1 Score :  0.9875    0.9979    0.9844    1.0000 

For Wheat 

Training on single GPU. 

Test accuracy: 96.5909% 

Confusion Matrix: 

    15     0     0     2 

     0    15     0     0 

     0     0    13     0 

     0     0     1    42 

Precision:   1.0000    1.0000    0.9286    0.9545 

Recall:    0.8824   1.0000   1.0000   0.9767 

F1 Score:    0.9375    1.0000    0.9630    0.9655 

After collecting these metrics for each dataset, we can evaluate the model's performance in 

terms of accuracy in correctly detecting diseased and healthy leaves, precision, recall, and total F1 

score. Furthermore, we may compare the model's performance across different datasets to assess its 

generalization capacity. 

Discussion 

The current study presents a simple approach for diagnosing illnesses in wheat, rice, and maize. 

With an accuracy of 84.4%, the suggested model beats the current benchmark CNN models in terms 

of number of parameters and accuracy. The proposed model employs different-sized filters at the same 

level across Convolutional layers to improve disease categorization. Multiple cases demonstrate the 

accuracy of the derived features in diagnosing diseases with different widths of affected patches. The 

outcomes demonstrate how well the suggested approach works in cases involving the classification of 

diseases specific to particular crops. Without modifying the architecture, the proposed model classifies 

maize as healthy or ill with 99.74% accuracy. Comparable results were obtained when rice and wheat 

images were classified as healthy or sick (82.67% and 97.5%, respectively). The suggested model 

functions as a versatile tool suitable for various settings. 

 

V. Conclusion & Future Scope 

In summary, the proposed unified lightweight CNN-based model has yielded promising 

outcomes in detecting and diagnosing diseases in maize, rice, and wheat plants. Thorough evaluations 

using metrics such as accuracy, precision, recall, and F1 score reveal that the model performs robustly 

across various datasets, underscoring its effectiveness in automated plant disease diagnosis. Its 

capability to accurately differentiate between healthy and diseased leaves suggests its potential as a 

valuable tool for farmers and agricultural stakeholders in managing and monitoring crop health. 

Future research could explore enhancements to the model's design, including the integration of 

attention mechanisms or the incorporation of additional data modalities, to further boost its accuracy 

and resilience. Additionally, implementing the model in real-world agricultural environments, such as 

field deployments and mobile application integration, could significantly impact sustainable farming 

practices and contribute to global food security initiatives. 

 

References 

[1] Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N., & Nelson, A. (2019). The 

global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 3(3), 430-

439. 

[2] Jones, J.D., Dangl, J.L. (2006). The plant immune system. Nature, 444(7117), 323-329. 

[3] Ghorbani, A., Sarie, D., Ramzanpour, M.R., Omid, M., Ahmadi, N., Vahabi, K., & Ghorbani, M. 

(2018). Visual inspection of plant diseases using convolutional neural networks. Computers and 

Electronics in Agriculture, 151, 84-98. 



[ 

 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 53, Issue 6, No.2, June : 2024 
  
 

UGC CARE Group-1                                                                                                                      207 

[4] Singh, A.K., Ganapathysubramanian, B., Sarkar, S., & Singh, A. (2018). Deep learning for plant 

stress phenotyping: Trends and future perspectives. Trends in Plant Science, 23(10), 883-898. 

[5] Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012). ImageNet classification with deep 

convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097-1105. 

[6] MATLAB (2021). MATLAB R2021a Documentation. MathWorks. Retrieved from 

https://www.mathworks.com/help/matlab/ 

[7] Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by 

reducing internal covariate shift. Proceedings of the 32nd International Conference on Machine 

Learning, 37, 448-456. 

[8] Prasad, A.M., Iverson, L.R., & Liaw, A. (2006). Newer classification and regression tree 

techniques: Bagging and random forests for ecological prediction. Ecosystems, 9(2), 181-199. 

[9] Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for 

classification tasks. Information Processing & Management, 45(4), 427-437. 

[10] Barbedo, J.G.A. (2019). Impact of dataset size and variety on the effectiveness of deep learning 

and transfer learning for plant disease classification. Computers and Electronics in Agriculture, 161, 

272-281. 

[11] Mohanty, S.P., Hughes, D.P., & Salathé, M. (2016). Using deep learning for image-based plant 

disease detection. Frontiers in Plant Science, 7, 1419. 

[12] Ferentinos, K.P. (2018). Deep learning models for plant disease detection and diagnosis. 

Computers and Electronics in Agriculture, 145, 311-318. 

[13] Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., & Stefanovic, D. (2016). Deep neural 

networks based recognition of plant diseases by leaf image classification. Computational Intelligence 

and Neuroscience, 2016, 3289801. 

[14] Ghosal, S., Blystone, D., Singh, A.K., Ganapathysubramanian, B., Singh, A., & Sarkar, S. (2018). 

An explainable deep machine vision framework for plant stress phenotyping. Proceedings of the 

National Academy of Sciences, 115(18), 4613-4618. 

[15] Awada, T., Grinblat, G.L., Ballvora, A., & Berendzen, K.W. (2019). Deep learning for plant stress 

phenotyping: Trends and future perspectives. Computers and Electronics in Agriculture, 161, 284-296. 

[16] Hu, J., Jin, J., Li, Y., & Luo, J. (2020). Plant disease recognition from images using convolutional 

neural networks with pairwise CNN based transfer learning. Information Processing in Agriculture, 

7(4), 560-567. 

[17] Singh, A., Ganapathysubramanian, B., Sarkar, S., & Singh, A. (2016). Deep learning for plant 

stress phenotyping: Trends and future perspectives. Trends in Plant Science, 23(10), 883-898. 

[18] Ferentinos, K.P. (2018). Deep learning models for plant disease detection and diagnosis. 

Computers and Electronics in Agriculture, 145, 311-318. 

 


