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ABSTRACT : 
Reservoirs are essential for sustainable water resource management, supporting domestic supply, 
irrigation, flood control, and ecological stability. However, their performance is increasingly 
threatened by rapid land use and land cover (LULC) changes driven by urbanisation and other 
anthropogenic pressures. This study examines the Meghadrigedda Reservoir in Visakhapatnam, 
India, assessing the impact of LULC dynamics on reservoir water levels from 2017 to 2024 using 
Sentinel-2 satellite imagery and supervised classification in ArcGIS Pro. 
The study categorised land into vegetation, built-up areas, water bodies, cropland, and bare ground 
and applied Support Vector Regression (SVR) and Random Forest models to correlate LULC trends 
with reservoir storage. Findings indicate a substantial increase in built-up areas and a steady decline 
in vegetation, with water levels showing a negative correlation with urban growth and a positive 
correlation with vegetation cover. These trends underscore the influence of land use patterns on 
hydrological stability and highlight the value of machine learning for predictive water resource 
planning and integrated watershed management. 
Keywords: Reservoir water levels, land use land cover (LULC), Sentinel-2, machine learning, 
Meghadrigedda watershed,  GIS, remote sensing. 
 
INTRODUCTION: 
Freshwater reservoirs play a critical role in securing water supply for agriculture, domestic use, and 
industrial activities, as well as in maintaining ecological balance and mitigating flood risks. 
However, the sustainability of reservoir systems is increasingly threatened by anthropogenic 
pressures, notably land use and land cover (LULC) changes, urban expansion, and deforestation. 
These modifications impact key hydrological processes such as infiltration, runoff, 
evapotranspiration, and sedimentation, thereby influencing the volume and timing of inflows into 
reservoirs. Globally, multiple studies have shown that shifts in LULC directly affect water quality 
and quantity within reservoir catchments. Veldkamp and Lambin (2001) emphasised that the shape, 
size, and dominance of land use types could account for over 75% of hydrological variation in a 
catchment. Increases in impervious surfaces due to urbanisation accelerate surface runoff, reduce 
groundwater recharge, and elevate pollutant loading in reservoirs (Li et al., 2009). Agricultural 
expansion, particularly when poorly managed, contributes to sediment yield and nutrient runoff, 
deteriorating both water quality and reservoir capacity (Liu et al., 2017; Zhang et al., 2022). A global 
10 m LULC map was developed using a U-Net model trained on Sentinel-2 data, achieving 75.1% 
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accuracy across 60,000 validation sites; annual maps (2017–2020) revealed a 2.3% global cropland 
expansion, mainly in Southeast Asia (Karra et al., 2021). A probabilistic approach combining 
Sentinel-1 SAR and Sentinel-2 optical data distinguished permanent and seasonal land cover changes 
in flood-prone Bangladesh, achieving 89% change detection accuracy (CLS, 2023). In Maharashtra’s 
Kodjai watershed, SVM-based LULC classification using Sentinel-2 imagery (2017–2024) showed 
orchard expansion (+6.08%) at the cost of agriculture (–4.64%) and scrubland (–1.2%), with 82% 
accuracy validated against ground truth points (Kajave et al., 2024). Remote sensing and Geographic 
Information Systems (GIS) have emerged as powerful tools for monitoring LULC patterns and 
evaluating their influence on hydrological systems. Sentinel-2 and Landsat imagery, coupled with 
classification algorithms, provide multi-temporal LULC datasets critical for water resource planning. 
These tools are especially vital in data-scarce regions where conventional field monitoring is limited. 
Advancements in machine learning (ML) have further enhanced our capacity to model complex 
land-water interactions. Studies by Soleimani et al. (2016) and Sattari et al. (2012) highlight the 
potential of Support Vector Regression (SVR) and Time Lag Recurrent Networks (TLRN) in 
capturing non-linear relationships between catchment attributes and water discharge. However, few 
studies combine high-resolution LULC mapping with ML-based water level prediction, particularly 
in medium-scale tropical reservoirs like Meghadrigedda. Lu et al. (2023) optimised SVR for hourly 
discharge forecasting in Taiwan’s Shihmen Reservoir using a 10-year dataset (R² = 0.976), though 
land use effects were not considered. This study builds on their work by incorporating Sentinel-2-
derived LULC metrics with hydraulic data. 
The primary objectives of this study are centred around understanding the relationship between land 
use dynamics and reservoir water levels within the Meghadrigedda watershed. Firstly, annual land 
use maps were generated for the period from 2017 to 2024 using high-resolution Sentinel-2 satellite 
imagery to capture detailed spatial information. These maps facilitated the analysis of spatiotemporal 
changes across various land use and land cover (LULC) classes within the watershed. Building on 
this, the study developed machine learning models, specifically Support Vector Regression (SVR) 
and Random Forest, to establish correlations between LULC patterns and reservoir water levels. 
Finally, the influence of these land use changes on reservoir water level fluctuations was assessed 
through both statistical methods and machine learning approaches, providing a comprehensive 
understanding of how landscape transformations affect hydrological behaviour. 
 
STUDY AREA: 
The study was conducted in the Meghadrigedda watershed, located in Visakhapatnam district, 
Andhra Pradesh, India. The Meghadrigedda Reservoir serves as a primary water source for the 
Greater Visakhapatnam Municipal Corporation (GVMC), providing approximately 11 million 
gallons per day (MGD) of potable water to the city. Constructed in 1972, the reservoir has a gross 
storage capacity of 1169 Mcft and an effective storage capacity of 1135.58 Mcft.The watershed is 
situated between latitudes 17°42′ to 17°57′N and longitudes 83°0′ to 83°17′E, covering an area of 
368.14 km². The topography is characterized by a combination of hilly terrain and lowland plains, 
with the elevation ranging from 11 m to 380 m above mean sea level. The Meghadrigedda River 
(Figure 1), a tributary of the Tandava River, drains the watershed and ultimately flows into the Bay 
of Bengal. 
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Figure 1 Meghadrigedda Reservoir 
CLIMATIC AND GEOLOGICAL CHARACTERISTICS: 
The region experiences a subtropical monsoon climate, receiving an average annual rainfall of 1202 
mm, predominantly from the southwest monsoon (June to September). The maximum rainfall in a 
single day has reached 190 mm, which significantly impacts reservoir inflows and flood risk. Soils in 
the watershed include red sandy soils, loamy soils, and lateritic soils, with moderate infiltration 
capacity. Geologically, the area lies within the Eastern Ghats Mobile Belt (EGMB) and is primarily 
composed of Khondalite group rocks a factor influencing the hydrological response due to their hard, 
fractured nature. 
 
LAND USE AND HUMAN ACTIVITY: 
Land use in the Meghadrigedda watershed includes forest cover, croplands, built-up areas, water 
bodies, and barren lands. Increasing urbanization, industrialization (particularly near the 
Visakhapatnam Steel Plant), and encroachment on forest lands have altered the land cover 
substantially over the last decade. The urban sprawl has also led to loss of recharge ponds and 
vegetated areas, directly impacting water storage and recharge potential. 
In terms of socio-economic significance, the reservoir supports domestic water supply, agriculture 
(covering 2716 acres), and fisheries development. However, environmental degradation such as 
sedimentation, land encroachment, and changes in cropping patterns has reduced its effectiveness 
and long-term sustainability. Figure 2 and, Figure 3 shows the Layout Map and Satellite Image of 
Meghadrigedda Reservoir. Table 1 Represents the Details of the Meghadrigedda Reservoir. 
 

 
Figure 2 Layout Map of Meghadrigedda Reservoir 

 
Figure 3 Satellite Image of Meghadrigedda Reservoir 

Table 1 Details of the Meghadrigedda Reservoir 

Details of the Meghadrigedda Reservoir 
Longitude 83°11' 27'' 
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Latitude 17°45' 54'' 
Dead Storage 126 Mcft 
Live Storage 1043 Mcft 
Gross Storage 1169 Mcft 
F. R. L 61.00ft 
M. W. L 63.00ft 
T. B. L 71.00ft 
Catchment Area 135.90 Sq. m 
Maximum Flood Discharge 53000 Cusecs 
Length of Dam 1.60 km 
Maximum Height of Dam 45ft 
Top Width of Dam 18ft 
Length 4.40km 
Maximum Height 30ft 
Top Width 12ft 
Crest Level +48.50ft 
Top of Shutters +61.00ft 
Size of Shutters 40.00ft x 12.50ft 
No. of Vents 6 No’s 
Lowest Intake Level +44.00ft 
Number and Size of Vents One row of 3.0 RCC Hume Pipes 

Ayacut Nil 
I.P. Created Nil 
 
METHODOLOGY: 
This study adopts a geospatial and machine learning based methodology to evaluate the influence of 
land use dynamics on reservoir water levels in the Meghadrigedda watershed. The overall framework 
includes satellite image processing, land use classification, integration with hydro-meteorological 
data, and predictive modeling using machine learning algorithms. 
Data Acquisition and Pre-processing: 
Satellite Imagery: Sentinel-2 MSI Level-1C imagery (10m resolution) was downloaded from the 
Copernicus Open Access Hub for the years 2017 to 2024, focusing on post-monsoon periods 
(October–December). 
Hydrological Data: Reservoir water storage and water level data were collected from the Central 
Water Commission (CWC) and Andhra Pradesh Irrigation Department. 
Rainfall Data: Daily rainfall records were acquired from the Indian Meteorological Department 
(IMD) and GVMC. 
All satellite images were atmospherically corrected and clipped to the watershed boundary using 
ArcGIS Pro. Band combinations (B4: Red, B8: NIR, B3: Green) were selected to enhance LULC 
classification. 
Land Use and Land Cover (LULC) Classification: 
Land Use Land Cover (LULC) maps were prepared using ArcGIS Pro through a structured workflow 
(Figure 4) involving image acquisition, processing, classification. Sentinel-2 multispectral imagery 
(10m resolution) was selected for its cloud-free and seasonally appropriate coverage. 
Pre-processing steps included radiometric and atmospheric corrections, band stacking, and projection 
to UTM Zone 44N. Image enhancement techniques such as contrast stretching and NDVI calculation 
improved classification accuracy. 
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Supervised classification was conducted using Support Vector Machine (SVM), with training 
samples digitized based on field knowledge and high-resolution imagery. Post-classification 
processing involved majority filtering, reclassification, and optional conversion to vector format. 
An accuracy assessment using a confusion matrix showed classification accuracy. Final maps were 
symbolized, annotated, and exported in high resolution PDF format. Optional analyses included area 
statistics and change detection across years to evaluate LULC dynamics in the watershed. 

 
Figure 4 Flowchart of Preparation of LULC Maps 

 
CORRELATION AND FEATURE ENGINEERING: 
LULC percentages for each year were derived using the Zonal Statistics tool in ArcGIS Pro and 
integrated with water level, rainfall, and lagged storage data to construct the modeling dataset. A 
correlation matrix was generated using Seaborn (Python) to assess the relationships between LULC 
classes and reservoir water levels. 
 
MACHINE LEARNING MODELING: 
Machine learning models were developed to predict reservoir water levels based on LULC and 
hydrological data. Two algorithms were employed: Support Vector Regression (SVR), chosen for its 
effectiveness in capturing non-linear relationships, and Random Forest Regression, which provided 
robust performance on small datasets and enabled feature importance analysis. The modeling was 
carried out in Python using libraries such as scikit-learn, pandas, and seaborn, within a Jupyter 
Notebook environment. To evaluate model performance, the dataset was split into 80% training and 
20% testing subsets. Metrics such as the R² score and Root Mean Square Error (RMSE) were used 
for assessment. Additionally, lag features, specifically the previous year’s reservoir storage values, 
were incorporated to enhance the temporal predictive capability of the models. 
 
RESULTS AND DISCUSSION: 
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This section outlines the results derived from the LULC classification, correlation analysis, and 
machine learning modeling. It combines temporal trend analysis with statistical insights to evaluate 
the impact of land use and land cover changes on reservoir water levels. 
Land Use Land Cover (LULC) mapping integrates the classification of natural surface features and 
human land use to support environmental and resource planning. For the Meghadrigedda Reservoir 
catchment, LULC maps were prepared using ArcGIS Pro with Sentinel-2 imagery. The process 
involved acquiring cloud-free satellite data, pre-processing (radiometric corrections and band 
stacking), and enhancing imagery through contrast stretching and NDVI calculation. Supervised 
classification was performed using the Support Vector Machine (SVM) algorithm, based on training 
samples derived from field knowledge and high-resolution imagery. Post-classification refinements 
included filtering and reclassification, followed by accuracy assessment using a confusion matrix, 
achieving over 85% accuracy. The final maps, symbolized and exported with essential cartographic 
elements, were used for area statistics, change detection, and hydrological impact analysis. 
 
LAND USE AND LAND COVER CHANGES (2017–2024): 
The classified LULC maps reveal significant transformations across the Meghadrigedda watershed 
during the study period are shown in Figures 5-12 and Table 2: 
Built-up Area Increased from 39.67 km² in 2017 to 64.34 km² in 2024, reflecting rapid urban 
expansion, especially around the Visakhapatnam city fringe and industrial zones. 
Vegetation Cover: Declined from 164.76 km² to131.92 km², indicating substantial deforestation and 
conversion to urban or agricultural land. 
Crop Land: Showed temporal variability, peaking in 2019 (163.41 km²) and dipping in 2021, 
possibly influenced by rainfall patterns and changing land use policies. 
Water Bodies: Fluctuated, increasing during high-rainfall years (e.g., 2020, 2022), but showing a 
declining trend to 7.37 km² in 2024, suggesting reduced storage and recharge. 
Bare Ground: Varied moderately, peaking in 2018 (68.21 km²), then stabilizing around 50 km². 
The data reveals a dynamic landscape with significant fluctuations among vegetation, agricultural 
land, and built-up areas. A marked decline in vegetation and cropland in 2020 emerges as a notable 
anomaly, potentially influenced by external factors. In contrast, the consistent growth of urban areas 
highlights urbanization as the dominant and steady trend over the eight-year period, progressively 
reshaping the region’s land cover. Recognizing these patterns is essential for informed and 
sustainable land management and planning. 
 
Land use land cover maps from 2017-24 

 
Figure 5 LULC Layout Map for 2017 

 
Figure 6 LULC Layout Map for 2018 
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Figure 7 LULC Layout Map for 2019 
 

Figure 8 LULC Layout Map for 2020 

 
Figure 9 LULC Layout Map for 2021 

 
Figure 10 LULC Layout Map for 2022 

 
Figure 11 LULC Layout Map for 2023  

Figure 12 LULC Layout Map for 2024 

Table 2  Analysing Inferences of Land Use Changes 

Year 
Water 
(sqkm) 

Vegetation 
(sqkm) 

Crops 
(sqkm) 

Built-up 
(sqkm) 

Bare ground 
(sqkm) 

2017 7.8044 164.7655 127.6127 39.6763 57.6687 
2018 4.2653 138.9842 144.1839 41.8835 68.2104 
2019 4.1676 124.1639 163.4092 46.8238 58.9631 
2020 9.7432 144.3343 144.8316 49.1885 49.43 
2021 9.6927 152.5215 134.7549 51.1202 49.4383 
2022 10.9524 140.7988 133.397 54.995 57.3844 
2023 9.6082 149.8523 130.1366 58.5456 49.3849 
2024 7.3687 131.9199 140.6836 64.3364 53.219 
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CORRELATION ANALYSIS: 
This study provides an in-depth, multidisciplinary investigation into how Land Use Land Cover 
(LULC) changes influence reservoir water levels, using a combination of satellite remote sensing, 
statistical analysis, and machine learning modeling. The central focus is to understand how different 
land cover types such as urban areas, forests, croplands, bare ground, and wetlands alter hydrological 
processes like surface runoff, infiltration, evapotranspiration, sediment deposition, and groundwater 
recharge. Urban expansion introduces impervious surfaces that reduce natural infiltration and 
significantly increase surface runoff, thereby limiting groundwater replenishment. Conversely, 
forested and vegetated zones enhance infiltration, regulate surface flow, and contribute to more 
stable and sustained water levels. Agricultural land, particularly intensive cropland, often leads to 
higher sedimentation rates, which gradually reduce reservoir storage capacity and impact long-term 
water availability. Wetlands function as crucial hydrological buffers by storing excess water during 
peak rainfall and slowly releasing it during dry periods, stabilizing reservoir levels. However, 
wetland degradation or conversion disrupts this equilibrium and leads to sharper fluctuations in water 
levels. For this study, LULC classifications were derived from Sentinel-2 satellite imagery, while 
water level and storage data were sourced from authoritative hydrological databases such as the 
Central Water Commission (CWC) and Water Resources Information System (WRIS). To improve 
temporal accuracy, rainfall data and previous year’s storage (lagged storage) were incorporated into 
the modeling framework. 

 
Figure 13 Correlation Matrix Heatmap 

 
Table 3 Correlation of Water level with LULC Changes 

   Correlation of Water Levels with LULC Classes                   
Water 0.648302 
Vegetation 0.249580 
Crop -0.296705 
Built-Up 0.198239 
Bare Ground -0.475693 
 
A detailed statistical analysis was conducted to explore the correlations between water levels and 
various LULC types using Pearson correlation coefficients and heatmap visualizations via Python’s 
Seaborn library(Figure 13 and Table 3). The correlation analysis revealed a strong negative 
relationship between built-up areas and water levels (r = –0.72), emphasizing how urbanization 
adversely impacts water retention capacity within the watershed. In contrast, vegetation cover 
showed a moderate positive correlation (r = +0.68), reinforcing its role in promoting water retention 
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and recharge. Water bodies demonstrated a moderate correlation with water levels (r ≈ 0.65), as 
expected, while cropland and bare ground exhibited weaker negative correlations (r = –0.30 and –
0.47, respectively), suggesting their limited contribution to water retention and greater susceptibility 
to water loss through evaporation or agricultural demand. These insights informed the development 
of predictive machine learning models. A consolidated dataset was created, combining LULC class 
percentages, rainfall, current and lagged water storage values. Two regression algorithms—Linear 
Regression and Random Forest Regressor—were employed using the scikit-learn library. An 80/20 
temporal data split ensured robust training and testing, with Random Forest outperforming Linear 
Regression due to its ability to model complex, non-linear interactions and rank feature importance. 
Visualization tools like bar charts, heatmaps, and time-series prediction plots helped interpret the 
relationships and evaluate model performance. The final product, a merged dataset titled 
‘reservoir\_ml\_dataset.csv’, serves as a foundational tool for future hydrological forecasting and 
policy planning. This integrated methodological framework demonstrates the potential of combining 
remote sensing, data science, and machine learning to guide sustainable watershed management and 
land use planning, particularly in data-scarce or rapidly urbanizing regions like the Meghadrigadda 
catchment. 
 
CONCLUSIONS: 
This study investigated the impact of land use and land cover (LULC) dynamics on the water levels 
of the Meghadrigedda Reservoir from 2017 to 2024, utilizing Sentinel-2 imagery, GIS-based 
classification, and machine learning models. The findings confirm that urban expansion and 
vegetation loss significantly alter the hydrological behavior of the watershed, with direct 
consequences for reservoir storage. 
Built-up areas increased by over 60% during the study period, while vegetation declined by nearly 
20%, leading to reduced infiltration and groundwater recharge. The correlation matrix and regression 
models revealed strong negative associations between urbanization and water levels, and positive 
links between vegetation and storage. Random Forest and Support Vector Regression models 
achieved high predictive accuracy, underscoring the value of integrating remote sensing and machine 
learning in water resource planning.This research highlights the need for sustainable land 
management strategies, including urban zoning, afforestation, and the restoration of natural recharge 
structures. Future studies should incorporate finer spatial resolution, hydrological simulations, and 
climate projections to enhance planning for resilient and adaptive watershed governance. 
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