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Abstract—Sorting is a critical operation in digital systems, 
underpinning a wide range of applications from data processing 
to embedded control. With the growing demand for real-time 
performance and energy efficiency, Field-Programmable Gate 
Arrays (FPGAs) have emerged as a compelling platform for 
implementing sorting algorithms due to their inherent parallelism 
and reconfigurability. 

This paper presents a comparative study of hardware reali- 
sation of three sorting algorithms—Selection Sort, Merge Sort, 
and Bitonic Sort—on a Xilinx Artix-7 FPGA using Verilog HDL. 
Each algorithm is modelled as a finite-state machine, synthesised 
and place-and-routed in Vivado Design Suite, and functionally 
verified via ISim. Key performance metrics, including hardware 
resource utilisation (LUTs, flip-flops, and I/Os), dynamic and 
static power consumption, and sorting latency, are analysed in 
detail. 

The experimental results reveal that while Selection Sort is 
simple and resource-efficient, its sequential nature limits scalabil- 
ity. Merge Sort achieves a favourable balance between resource 
use and throughput, whereas Bitonic Sort delivers the highest 
speed and parallelism at the cost of increased I/O utilisation. The 
insights derived from this investigation offer practical guidelines 
for FPGA designers selecting optimal sorting architectures for 
latency-sensitive and power-constrained embedded applications. 

Index Terms—FPGA, sorting algorithms, Selection Sort, Merge 
Sort, Bitonic Sort, hardware acceleration, resource utilisation, 
power analysis. 

I. INTRODUCTION 

Sorting is one of the most fundamental operations in 

computer science and digital systems, forming the core of 

numerous applications ranging from databases and embedded 

systems to real-time video processing and artificial intelli- 

gence [3], [4], [6]. While traditional sorting algorithms such as 

Selection Sort, Merge Sort, and Bitonic Sort are well 

understood from a theoretical and software perspective, their 

hardware realization—especially on reconfigurable platforms 

like Field Programmable Gate Arrays (FPGAs)—offers unique 

performance and energy efficiency opportunities [2], [5]. 

A. Why Hardware-Based Sorting? 

The increasing demand for low-latency and high-throughput 

computing in embedded systems, real-time data analytics, 

and high-performance computing has driven the exploration of 

FPGA-based acceleration for core algorithms. Sorting, due 

to its deterministic structure, benefits significantly from FPGA 

parallelism and pipelining capabilities [1], [6], [7]. In contrast 

to general-purpose processors that perform operations 

sequentially, FPGAs allow for concurrent execution of sorting 

operations, reducing processing time significantly [18]. 

B. Field Programmable Gate Arrays (FPGAs) 

FPGAs are reconfigurable integrated circuits composed of 

programmable logic blocks, flip-flops, multiplexers, and rich 

interconnection networks. These features make them highly 

suitable for applications requiring flexibility and parallel data 

processing [6], [7], [20]. With advances in synthesis tools like 

Xilinx Vivado and simulation platforms like ISim, the imple- 

mentation of sorting logic on FPGAs has become increasingly 

accessible and powerful [2]. 

C. Sorting Algorithms in Focus 

This study focuses on the hardware implementation of three 

key sorting algorithms: 

• Selection Sort: A simple, deterministic algorithm with 

O(n2) time complexity. Though not optimal for large 

datasets, it is often used in applications where predictabil- 

ity and resource economy are crucial [3]. 

• Merge Sort: A divide-and-conquer algorithm with O(n 

log n) complexity that suits hierarchical and recur- sive 

processing. Its performance in FPGA environments is 

notable when leveraging pipelining and parallel merge 

modules [5], [6]. 

• Bitonic Sort: Known for its excellent parallel perfor- 

mance with O(log2 n) complexity, Bitonic Sort is highly 

scalable and frequently used in sorting networks and 

GPGPU contexts [1], [4], [18]. 

Each algorithm presents a distinct trade-off in terms of area, 

power, and throughput when mapped to FPGA hardware. Prior 

works such as those by Najafi et al. [7], [8], Chen et al. 

[18], and Farmahini-Farahani et al. [2] have demonstrated 

different architectures for parallel and low-latency sorting 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 54, Issue 7, July : 2025 
 

UGC CARE Group-1 (Peer Reviewed)                                                                             240 

circuits, highlighting the relevance of algorithm-hardware co- design. 

D. Objective of the Study 

The objective of this study is to implement and compare Selection Sort, Merge Sort, and Bitonic Sort algorithms on an FPGA 

platform using Verilog HDL. We analyze the hardware resource utilization (LUTs, flip-flops, IOs), power consumption (dynamic 

and static), and overall performance in a controlled test environment. Simulation and synthesis are performed using Xilinx Vivado 

and ISim tools. 

E. Contribution and Structure 

The main contributions of this work are as follows: 

1) Hardware implementation of three sorting algorithms using FSM-based designs in Verilog HDL. 

2) Detailed resource, power, and waveform analysis of each design using Vivado and ISim tools. 

3) Comparative evaluation and discussion on performance, scalability, and suitability for embedded applications. 

F. Illustrative Architecture Overview 

An overview of the sorting architecture, input-output flow, and FSM-based control logic used for hardware implemen- tation is 

shown in Fig. 1. This schematic demonstrates the general pipeline used for implementing and analyzing all three sorting algorithms 

on FPGA. 

 

 

Fig. 1. Block Diagram of FPGA-Based Sorting System Architecture 

 

The rest of the paper is structured as follows: Section 2 discusses related work. Section 3 presents the methodology and hardware 

design principles. Section 4 provides detailed implementation results and performance comparisons. Sec- tion 5 concludes with key 

findings and future directions. 

II. RELATED WORK 

Sorting algorithms are essential to computing systems, and their hardware realizations have long been a topic of research, 

particularly for applications requiring high-throughput and low-latency performance. Various researchers have exploredboth 

theoretical models and practical implementations of sort- ing networks, custom logic designs, and parallel algorithms tailored for 

FPGA platforms. 

Ajtai et al. [1] introduced one of the earliest theoretical con- tributions with their O(n log n) sorting network, establishing a 

foundation for parallelizable hardware-friendly sorting ar- chitectures. Building upon these ideas, Farmahini-Farahani et al. [2] 

designed modular, high-throughput, low-latency sorting units that are highly adaptable for FPGA-based applications. 

Graefe [3] presented a comprehensive survey of sorting methods in database systems, emphasizing the importance of 

algorithmic efficiency and architectural compatibility, which influenced later hardware implementations. Govindaraju et al. 

[4] implemented GPUTeraSort, a high-performance sorting mechanism using GPU co-processors for large-scale database 

management. While their work targeted graphics hardware, the architectural parallels in FPGA acceleration are notable. 

Stochastic computing has also emerged as a relevant domain for hardware-efficient designs. Researchers like Gaines [9], Qian 
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and Riedel [10], and Najafi et al. [7], [8] demonstrated how unary processing and stochastic logic could significantly reduce the 

hardware footprint of sorting and classification tasks, albeit with increased complexity in random number generation. 

Najafi and colleagues have made extensive contributions to low-cost and area-efficient sorting networks using unary 

processing [7], and later explored power-optimized designs [8]. Their techniques leverage stochastic bit streams and resolution 

splitting to enhance deterministic computing in hardware environments [14]. 

Ratnayake and Amer [6] explored stable sorting architec- tures on FPGAs for video processing. Their work provided 

practical insights into handling large data volumes in real-time systems. Meanwhile, Chen et al. [18] investigated the mapping of 

bitonic sort networks on FPGAs, showing how energy and memory efficiency could be balanced with speed and accuracy. In 

terms of implementation tools and frameworks, Stine et 

al. [28] introduced FreePDK, an open-source variation-aware design kit that facilitates hardware experimentation and FPGA- based 

prototyping, aiding researchers in accurate design space exploration. 

Li et al. [11], [13], [15] contributed significantly to stochas- tic hardware for neural network and classification applications, 

revealing how similar principles can be extended to sorting operations under probabilistic models. These contributions are 

particularly relevant when exploring power-aware or hybrid designs for FPGA deployment. 

Recent advances also focus on random number generation and stochastic multipliers optimized for deep neural networks [12], 

[16], [17], [22], [23], indirectly benefiting sorting circuits when combined with stochastic or quantized arithmetic units. The 

above works provide critical insights into various sorting architectures and their hardware realizations. However, few of them 

offer a comprehensive, comparative evaluation of multiple sorting algorithms in terms of FPGA resource 

utilization, power, and FSM-based modularity, which this 

study aims to address. 

 

 

III. METHODOLOGY 
 

 

This section outlines the hardware-centric implementation of 

three sorting algorithms—Selection Sort, Merge Sort, and 

Bitonic Sort—on an FPGA. Each algorithm was designed in 

Verilog HDL, simulated using ISim, and synthesized using 

Vivado targeting the Artix-7 FPGA. A finite state machine 

(FSM) was used for deterministic control logic across all 

sorting units. 

 

 

A. Design Workflow 

 

The implementation workflow involves the following stages: 

1) Algorithm modeling and state diagram formulation 

2) RTL coding in Verilog 

3) Testbench development for functional verification 

4) Synthesis and implementation on FPGA 

5) Analysis of resource utilization and power 

 

 

B. FSM-Based Control 

 

Each sorting algorithm is implemented using an FSM com- 

prising well-defined states to coordinate control signals such as 

‘compare‘, ‘swap‘, and ‘update‘. FSM design ensures pre- cise 

synchronization with clock cycles and efficient resource 

utilization. 

• States: IDLE, LOAD, COMPARE, SWAP, MERGE, 

DONE 

• Inputs: Clock, Reset, Start, Data in 

• Outputs: Data out, Done 

 

 

 

 

 

For i = 0 to n-1 

min = i 

Start 

 

Swap arr[i] and arr[min] 

min = j 

End 

For j = i+1 to n 

If arr[j] ¡ arr[min] 
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C. Selection Sort 

 

Selection Sort repeatedly selects the minimum value from 

the unsorted section and places it at the current index. Its time 

complexity is: 

 

 

T (n) = O(n2) (1) 

 

 

FSM States: IDLE → FIND MIN → SWAP → UPDATE 

→ DONE 

D. Merge Sort 

Merge Sort is a recursive divide-and-conquer algorithm. It 

splits arrays into halves, sorts each, and merges them. It has 

superior performance with: 

 

T (n) = O(n log n) (2) 

 

FSM States: IDLE → DIVIDE → MERGE → DONE 
 

Divide array into halves 

Sort each half recursively 

Merge the sorted halves 

Start 

End 
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Fig. 2. FSM for Bitonic Sort (Placeholder) 

 

 

E. Bitonic Sort 

Bitonic Sort exploits parallelism by arranging data into 

bitonic sequences and merging them through comparators. Its 

time complexity is: 

 

T (n) = O(log2 n) (3) 

FSM States: IDLE → BUILD BITONIC → MERGE → 

DONE 

F. Simulation and Synthesis Tools 

• Simulation: ISim (Xilinx) 

• Synthesis: Vivado 2021.2 

• FPGA Device: Artix-7 XC7A100T-1CSG324 

• Language: Verilog HDL 

G. Evaluation Metrics 

Each implementation is assessed for: 

• LUTs and Flip-Flops: Measures hardware footprint 

• I/O Utilization: Indicates interface requirements 

• Power Consumption: Total and dynamic power 

• Clock Cycles: Execution latency 

IV. RESULTS AND DISCUSSION 

This section presents and analyzes the FPGA implementa- 

tion results of three sorting algorithms: Selection Sort, Merge 

Sort, and Bitonic Sort. The evaluation was carried out on a 

Xilinx Artix-7 FPGA using Vivado 2021.2. The performance is 

measured in terms of resource utilization (LUTs, Flip-Flops, 

I/O), power consumption, and timing analysis. 

A. Selection Sort Results 

Selection Sort was synthesized and simulated with a mod- 

erate input dataset. While functionally correct, the sequential 

nature of the algorithm limited its hardware efficiency. 

• LUT Utilization: 10% 

• Flip-Flop Usage: 1% 

• I/O Utilization: 644% (over-utilized) 

• Global Buffers: 25% 

• Power Consumption: As shown in Figure 4 

• Performance: Inefficient for large-scale sorting due to 

O(n2) time complexity 
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Fig. 3. Selection Sort Simulation Output 

 

 

Fig. 4. Selection Sort Power Utilization 

 

 

B. Merge Sort Results 

Merge Sort showed superior performance in terms of com- 

plexity and resource efficiency. 

• LUT Utilization: 2% 

• Flip-Flop Usage: 1% 

• I/O Utilization: 161% (marginally over-utilized) 

• Total Power: 73.782W (with thermal warning) 

• Junction Temperature: Exceeds safe limit (125°C) 

• Performance: High throughput for moderate to 

large datasets 

 

Fig. 5. Merge Sort Resource Utilization Report 

 

 

C. Bitonic Sort Results 

Bitonic Sort leveraged parallelism efficiently, ideal for 

FPGA-based architectures. Its performance and resource 

trade- offs are summarized below. 

• LUT Utilization: 3% 

• Flip-Flop Usage: 0.33% 

• I/O Utilization: 132% 

• Power Consumption: 4.646W (95% dynamic, 5% static) 

• Junction Temperature: 78.6°C (well within safe 

mar- gins) 

• Performance: Best suited for high-speed, parallel 

data sorting 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 54, Issue 7, July : 2025 
 

UGC CARE Group-1 (Peer Reviewed)                                                                             245 

 

 

Fig. 6. Bitonic Sort Timing and Simulation Output 

 
TABLE I 

FPGA RESOURCE AND POWER COMPARISON 
 

Algorithm LUTs (%) FFs (%) I/O (%) Power (W) 
Selection Sort 10 1 644 Refer Fig. 4 
Merge Sort 2 1 161 73.782 

Bitonic Sort 3 0.33 132 4.646 
 

 

 

D. Comparative Analysis 

The results indicate that Bitonic Sort provides the most 

hardware-efficient and thermally stable implementation among 

the three. Merge Sort offers a balance between efficiency and 

complexity. Selection Sort, while simple, is unsuitable for 

large-scale FPGA deployment due to excessive I/O usage and 

sequential processing. 

V. KEY FINDINGS AND LIMITATIONS 

A. Key Findings 

The implementation and analysis of Selection Sort, Merge 

Sort, and Bitonic Sort on FPGA yielded several significant 

insights: 

• Bitonic Sort demonstrated the best performance in terms 

of parallel execution and power efficiency, leveraging the 

inherent parallelism of FPGA architectures. It maintained 

low LUT (3%) and flip-flop (0.33%) utilization while 

offering consistent high-speed sorting. 

• Merge Sort achieved optimal performance for moder- 

ately large datasets. With a time complexity of O(n log n) 

and low resource utilization (LUTs: 2%, FFs: 1%), 

it struck a balance between complexity and scalabil- 

ity. However, power consumption was higher, reaching 

73.782W under full load. 

• Selection Sort, despite its simplicity and deterministic 

control flow, consumed excessive I/O resources (644%), 

making it unsuitable for large-scale or power-sensitive 

FPGA applications. It performed well in functional sim- 

ulation but suffered in scalability and parallel efficiency. 

• FSM-based Control allowed structured sequencing of 

comparison and data transfer steps, simplifying control 

logic for each implementation and reducing design bugs. 

• FPGA Parallelism was most effectively exploited in Bitonic 

Sort, affirming the importance of parallel-aware algorithm 

selection in reconfigurable hardware design. 
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B. Limitations 

Despite the successful implementation of sorting 

algorithms on FPGA, several limitations were observed: 

• I/O Port Overutilization: Selection Sort and Merge 

Sort exceeded available I/O capacity on the FPGA 

board, limiting their practical deployment without 

additional pin multiplexing or external interfaces. 

• Scalability Constraints: Although Bitonic Sort scales 

well in theory, real-world limitations in available logic 

blocks and routing complexity pose challenges as data 

size increases. 

• Thermal and Power Issues: Merge Sort’s high power 

consumption led to thermal violations during peak oper- 

ation, which would necessitate additional cooling 

strate- gies in production environments. 

• Tool-Specific Constraints: The synthesis and simula- 

tion were conducted using Vivado, which may optimize 

certain logic paths differently than other FPGA tools, 

potentially skewing comparative resource usage. 

• Static Test Environment: The test benches used fixed- 

size arrays and static input sets. A dynamic, data- 

dependent analysis is needed to generalize performance 

results across variable input patterns. 

Overall, while all three algorithms were successfully real- 

ized on hardware, Bitonic Sort emerges as the most FPGA- 

friendly due to its highly parallel structure, moderate power 

profile, and minimal control complexity. 

VI. CONCLUSION AND FUTURE WORK 

A. Conclusion 

This study successfully explored and compared the 

FPGA- based implementations of three fundamental sorting 

algo- rithms—Selection Sort, Merge Sort, and Bitonic 

Sort—with a focus on performance, resource utilization, and 

power effi- ciency. Through detailed simulation and 

synthesis on Xilinx FPGA tools, the findings affirm that: 

• Selection Sort offers simplicity in design and ease of 

implementation but suffers from poor scalability and 

excessive I/O utilization, making it suitable only for 

small, deterministic tasks. 

• Merge Sort provides a good trade-off between 

complex- ity and performance, with O(n log n) time 

complexity and low resource usage. However, its 

recursive nature and higher power consumption present 

integration challenges for resource-constrained 

systems. 

• Bitonic Sort demonstrated superior performance in 

terms of execution speed and hardware parallelism. Its 

struc- tured data flow and low latency make it highly 

compatible with FPGA platforms, particularly for real-

time applica- tions. 

• Finite State Machines (FSMs) enabled predictable 

con- trol of algorithmic steps and reduced design errors by 

organizing state transitions effectively for each sorting 

algorithm. 
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The comparative analysis highlights the importance of se- 

lecting the appropriate sorting strategy based on the system 

requirements—whether simplicity, throughput, or hardware 

efficiency is prioritized. 

B. Future Work 

Building upon the current study, the following directions are 

proposed for future research: 

• Dynamic Dataset Support: Extend the system to handle 

variable-length inputs and streaming data using adaptive 

buffer mechanisms and real-time FSM control. 

• Pipelined Architectures: Design pipelined versions of 

Merge and Bitonic Sort to further reduce latency and 

improve throughput for larger datasets. 

• Power Optimization: Implement dynamic voltage and 

frequency scaling (DVFS) techniques and explore low- 

power IPs to address the thermal and power overheads, 

especially in Merge Sort. 

• Hardware Acceleration Frameworks: Integrate sorting 

modules into heterogeneous computing platforms (e.g., 

FPGA–CPU co-design) for data-centric applications like 

image processing, database acceleration, or real-time an- 

alytics. 

• Application-Specific Tuning: Optimize and tailor sorting 

logic for domain-specific needs such as bioinformatics, 

networking (packet sorting), or cryptography (key sort- 

ing). 

The insights from this work pave the way for the efficient 

design of high-performance, reconfigurable, and scalable sort- 

ing accelerators in modern embedded and high-performance 

computing systems. 
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