

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 239

Performance-Centric FPGA Realization of Sorting

Algorithms: A Study on Selection, Bitonic, and Merge Sort

NATTALA MAHESH , Student, Department of Electronics & Communication Engineering, Nimra College of Engineering and

Technology, Ibrahimpatnam

Dr. AKBAR KHAN, Professor, Department of Electronics & Communication Engineering, Nimra College of Engineering and

Technology, Ibrahimpatnam

Abstract—Sorting is a critical operation in digital systems,
underpinning a wide range of applications from data processing
to embedded control. With the growing demand for real-time
performance and energy efficiency, Field-Programmable Gate
Arrays (FPGAs) have emerged as a compelling platform for
implementing sorting algorithms due to their inherent parallelism
and reconfigurability.

This paper presents a comparative study of hardware reali-
sation of three sorting algorithms—Selection Sort, Merge Sort,
and Bitonic Sort—on a Xilinx Artix-7 FPGA using Verilog HDL.
Each algorithm is modelled as a finite-state machine, synthesised
and place-and-routed in Vivado Design Suite, and functionally
verified via ISim. Key performance metrics, including hardware
resource utilisation (LUTs, flip-flops, and I/Os), dynamic and
static power consumption, and sorting latency, are analysed in
detail.

The experimental results reveal that while Selection Sort is
simple and resource-efficient, its sequential nature limits scalabil-
ity. Merge Sort achieves a favourable balance between resource
use and throughput, whereas Bitonic Sort delivers the highest
speed and parallelism at the cost of increased I/O utilisation. The
insights derived from this investigation offer practical guidelines
for FPGA designers selecting optimal sorting architectures for
latency-sensitive and power-constrained embedded applications.

Index Terms—FPGA, sorting algorithms, Selection Sort, Merge
Sort, Bitonic Sort, hardware acceleration, resource utilisation,
power analysis.

I. INTRODUCTION

Sorting is one of the most fundamental operations in

computer science and digital systems, forming the core of

numerous applications ranging from databases and embedded

systems to real-time video processing and artificial intelli-

gence [3], [4], [6]. While traditional sorting algorithms such as

Selection Sort, Merge Sort, and Bitonic Sort are well

understood from a theoretical and software perspective, their

hardware realization—especially on reconfigurable platforms

like Field Programmable Gate Arrays (FPGAs)—offers unique

performance and energy efficiency opportunities [2], [5].

A. Why Hardware-Based Sorting?

The increasing demand for low-latency and high-throughput

computing in embedded systems, real-time data analytics,

and high-performance computing has driven the exploration of

FPGA-based acceleration for core algorithms. Sorting, due

to its deterministic structure, benefits significantly from FPGA

parallelism and pipelining capabilities [1], [6], [7]. In contrast

to general-purpose processors that perform operations

sequentially, FPGAs allow for concurrent execution of sorting

operations, reducing processing time significantly [18].

B. Field Programmable Gate Arrays (FPGAs)

FPGAs are reconfigurable integrated circuits composed of

programmable logic blocks, flip-flops, multiplexers, and rich

interconnection networks. These features make them highly

suitable for applications requiring flexibility and parallel data

processing [6], [7], [20]. With advances in synthesis tools like

Xilinx Vivado and simulation platforms like ISim, the imple-

mentation of sorting logic on FPGAs has become increasingly

accessible and powerful [2].

C. Sorting Algorithms in Focus

This study focuses on the hardware implementation of three

key sorting algorithms:

• Selection Sort: A simple, deterministic algorithm with

O(n2) time complexity. Though not optimal for large

datasets, it is often used in applications where predictabil-

ity and resource economy are crucial [3].

• Merge Sort: A divide-and-conquer algorithm with O(n

log n) complexity that suits hierarchical and recur- sive

processing. Its performance in FPGA environments is

notable when leveraging pipelining and parallel merge

modules [5], [6].

• Bitonic Sort: Known for its excellent parallel perfor-

mance with O(log2 n) complexity, Bitonic Sort is highly

scalable and frequently used in sorting networks and

GPGPU contexts [1], [4], [18].

Each algorithm presents a distinct trade-off in terms of area,

power, and throughput when mapped to FPGA hardware. Prior

works such as those by Najafi et al. [7], [8], Chen et al.

[18], and Farmahini-Farahani et al. [2] have demonstrated

different architectures for parallel and low-latency sorting

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 240

circuits, highlighting the relevance of algorithm-hardware co- design.

D. Objective of the Study

The objective of this study is to implement and compare Selection Sort, Merge Sort, and Bitonic Sort algorithms on an FPGA

platform using Verilog HDL. We analyze the hardware resource utilization (LUTs, flip-flops, IOs), power consumption (dynamic

and static), and overall performance in a controlled test environment. Simulation and synthesis are performed using Xilinx Vivado

and ISim tools.

E. Contribution and Structure

The main contributions of this work are as follows:

1) Hardware implementation of three sorting algorithms using FSM-based designs in Verilog HDL.

2) Detailed resource, power, and waveform analysis of each design using Vivado and ISim tools.

3) Comparative evaluation and discussion on performance, scalability, and suitability for embedded applications.

F. Illustrative Architecture Overview

An overview of the sorting architecture, input-output flow, and FSM-based control logic used for hardware implemen- tation is

shown in Fig. 1. This schematic demonstrates the general pipeline used for implementing and analyzing all three sorting algorithms

on FPGA.

Fig. 1. Block Diagram of FPGA-Based Sorting System Architecture

The rest of the paper is structured as follows: Section 2 discusses related work. Section 3 presents the methodology and hardware

design principles. Section 4 provides detailed implementation results and performance comparisons. Sec- tion 5 concludes with key

findings and future directions.

II. RELATED WORK

Sorting algorithms are essential to computing systems, and their hardware realizations have long been a topic of research,

particularly for applications requiring high-throughput and low-latency performance. Various researchers have exploredboth

theoretical models and practical implementations of sort- ing networks, custom logic designs, and parallel algorithms tailored for

FPGA platforms.

Ajtai et al. [1] introduced one of the earliest theoretical con- tributions with their O(n log n) sorting network, establishing a

foundation for parallelizable hardware-friendly sorting ar- chitectures. Building upon these ideas, Farmahini-Farahani et al. [2]

designed modular, high-throughput, low-latency sorting units that are highly adaptable for FPGA-based applications.

Graefe [3] presented a comprehensive survey of sorting methods in database systems, emphasizing the importance of

algorithmic efficiency and architectural compatibility, which influenced later hardware implementations. Govindaraju et al.

[4] implemented GPUTeraSort, a high-performance sorting mechanism using GPU co-processors for large-scale database

management. While their work targeted graphics hardware, the architectural parallels in FPGA acceleration are notable.

Stochastic computing has also emerged as a relevant domain for hardware-efficient designs. Researchers like Gaines [9], Qian

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 241

and Riedel [10], and Najafi et al. [7], [8] demonstrated how unary processing and stochastic logic could significantly reduce the

hardware footprint of sorting and classification tasks, albeit with increased complexity in random number generation.

Najafi and colleagues have made extensive contributions to low-cost and area-efficient sorting networks using unary

processing [7], and later explored power-optimized designs [8]. Their techniques leverage stochastic bit streams and resolution

splitting to enhance deterministic computing in hardware environments [14].

Ratnayake and Amer [6] explored stable sorting architec- tures on FPGAs for video processing. Their work provided

practical insights into handling large data volumes in real-time systems. Meanwhile, Chen et al. [18] investigated the mapping of

bitonic sort networks on FPGAs, showing how energy and memory efficiency could be balanced with speed and accuracy. In

terms of implementation tools and frameworks, Stine et

al. [28] introduced FreePDK, an open-source variation-aware design kit that facilitates hardware experimentation and FPGA- based

prototyping, aiding researchers in accurate design space exploration.

Li et al. [11], [13], [15] contributed significantly to stochas- tic hardware for neural network and classification applications,

revealing how similar principles can be extended to sorting operations under probabilistic models. These contributions are

particularly relevant when exploring power-aware or hybrid designs for FPGA deployment.

Recent advances also focus on random number generation and stochastic multipliers optimized for deep neural networks [12],

[16], [17], [22], [23], indirectly benefiting sorting circuits when combined with stochastic or quantized arithmetic units. The

above works provide critical insights into various sorting architectures and their hardware realizations. However, few of them

offer a comprehensive, comparative evaluation of multiple sorting algorithms in terms of FPGA resource

utilization, power, and FSM-based modularity, which this

study aims to address.

III. METHODOLOGY

This section outlines the hardware-centric implementation of

three sorting algorithms—Selection Sort, Merge Sort, and

Bitonic Sort—on an FPGA. Each algorithm was designed in

Verilog HDL, simulated using ISim, and synthesized using

Vivado targeting the Artix-7 FPGA. A finite state machine

(FSM) was used for deterministic control logic across all

sorting units.

A. Design Workflow

The implementation workflow involves the following stages:

1) Algorithm modeling and state diagram formulation

2) RTL coding in Verilog

3) Testbench development for functional verification

4) Synthesis and implementation on FPGA

5) Analysis of resource utilization and power

B. FSM-Based Control

Each sorting algorithm is implemented using an FSM com-

prising well-defined states to coordinate control signals such as

‘compare‘, ‘swap‘, and ‘update‘. FSM design ensures pre- cise

synchronization with clock cycles and efficient resource

utilization.

• States: IDLE, LOAD, COMPARE, SWAP, MERGE,

DONE

• Inputs: Clock, Reset, Start, Data in

• Outputs: Data out, Done

For i = 0 to n-1

min = i

Start

Swap arr[i] and arr[min]

min = j

End

For j = i+1 to n

If arr[j] ¡ arr[min]

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 242

C. Selection Sort

Selection Sort repeatedly selects the minimum value from

the unsorted section and places it at the current index. Its time

complexity is:

T (n) = O(n2) (1)

FSM States: IDLE → FIND MIN → SWAP → UPDATE

→ DONE

D. Merge Sort

Merge Sort is a recursive divide-and-conquer algorithm. It

splits arrays into halves, sorts each, and merges them. It has

superior performance with:

T (n) = O(n log n) (2)

FSM States: IDLE → DIVIDE → MERGE → DONE

Divide array into halves

Sort each half recursively

Merge the sorted halves

Start

End

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 243

Fig. 2. FSM for Bitonic Sort (Placeholder)

E. Bitonic Sort

Bitonic Sort exploits parallelism by arranging data into

bitonic sequences and merging them through comparators. Its

time complexity is:

T (n) = O(log2 n) (3)

FSM States: IDLE → BUILD BITONIC → MERGE →

DONE

F. Simulation and Synthesis Tools

• Simulation: ISim (Xilinx)

• Synthesis: Vivado 2021.2

• FPGA Device: Artix-7 XC7A100T-1CSG324

• Language: Verilog HDL

G. Evaluation Metrics

Each implementation is assessed for:

• LUTs and Flip-Flops: Measures hardware footprint

• I/O Utilization: Indicates interface requirements

• Power Consumption: Total and dynamic power

• Clock Cycles: Execution latency

IV. RESULTS AND DISCUSSION

This section presents and analyzes the FPGA implementa-

tion results of three sorting algorithms: Selection Sort, Merge

Sort, and Bitonic Sort. The evaluation was carried out on a

Xilinx Artix-7 FPGA using Vivado 2021.2. The performance is

measured in terms of resource utilization (LUTs, Flip-Flops,

I/O), power consumption, and timing analysis.

A. Selection Sort Results

Selection Sort was synthesized and simulated with a mod-

erate input dataset. While functionally correct, the sequential

nature of the algorithm limited its hardware efficiency.

• LUT Utilization: 10%

• Flip-Flop Usage: 1%

• I/O Utilization: 644% (over-utilized)

• Global Buffers: 25%

• Power Consumption: As shown in Figure 4

• Performance: Inefficient for large-scale sorting due to

O(n2) time complexity

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 244

Fig. 3. Selection Sort Simulation Output

Fig. 4. Selection Sort Power Utilization

B. Merge Sort Results

Merge Sort showed superior performance in terms of com-

plexity and resource efficiency.

• LUT Utilization: 2%

• Flip-Flop Usage: 1%

• I/O Utilization: 161% (marginally over-utilized)

• Total Power: 73.782W (with thermal warning)

• Junction Temperature: Exceeds safe limit (125°C)

• Performance: High throughput for moderate to

large datasets

Fig. 5. Merge Sort Resource Utilization Report

C. Bitonic Sort Results

Bitonic Sort leveraged parallelism efficiently, ideal for

FPGA-based architectures. Its performance and resource

trade- offs are summarized below.

• LUT Utilization: 3%

• Flip-Flop Usage: 0.33%

• I/O Utilization: 132%

• Power Consumption: 4.646W (95% dynamic, 5% static)

• Junction Temperature: 78.6°C (well within safe

mar- gins)

• Performance: Best suited for high-speed, parallel

data sorting

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 245

Fig. 6. Bitonic Sort Timing and Simulation Output

TABLE I

FPGA RESOURCE AND POWER COMPARISON

Algorithm LUTs (%) FFs (%) I/O (%) Power (W)
Selection Sort 10 1 644 Refer Fig. 4
Merge Sort 2 1 161 73.782

Bitonic Sort 3 0.33 132 4.646

D. Comparative Analysis

The results indicate that Bitonic Sort provides the most

hardware-efficient and thermally stable implementation among

the three. Merge Sort offers a balance between efficiency and

complexity. Selection Sort, while simple, is unsuitable for

large-scale FPGA deployment due to excessive I/O usage and

sequential processing.

V. KEY FINDINGS AND LIMITATIONS

A. Key Findings

The implementation and analysis of Selection Sort, Merge

Sort, and Bitonic Sort on FPGA yielded several significant

insights:

• Bitonic Sort demonstrated the best performance in terms

of parallel execution and power efficiency, leveraging the

inherent parallelism of FPGA architectures. It maintained

low LUT (3%) and flip-flop (0.33%) utilization while

offering consistent high-speed sorting.

• Merge Sort achieved optimal performance for moder-

ately large datasets. With a time complexity of O(n log n)

and low resource utilization (LUTs: 2%, FFs: 1%),

it struck a balance between complexity and scalabil-

ity. However, power consumption was higher, reaching

73.782W under full load.

• Selection Sort, despite its simplicity and deterministic

control flow, consumed excessive I/O resources (644%),

making it unsuitable for large-scale or power-sensitive

FPGA applications. It performed well in functional sim-

ulation but suffered in scalability and parallel efficiency.

• FSM-based Control allowed structured sequencing of

comparison and data transfer steps, simplifying control

logic for each implementation and reducing design bugs.

• FPGA Parallelism was most effectively exploited in Bitonic

Sort, affirming the importance of parallel-aware algorithm

selection in reconfigurable hardware design.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 246

B. Limitations

Despite the successful implementation of sorting

algorithms on FPGA, several limitations were observed:

• I/O Port Overutilization: Selection Sort and Merge

Sort exceeded available I/O capacity on the FPGA

board, limiting their practical deployment without

additional pin multiplexing or external interfaces.

• Scalability Constraints: Although Bitonic Sort scales

well in theory, real-world limitations in available logic

blocks and routing complexity pose challenges as data

size increases.

• Thermal and Power Issues: Merge Sort’s high power

consumption led to thermal violations during peak oper-

ation, which would necessitate additional cooling

strate- gies in production environments.

• Tool-Specific Constraints: The synthesis and simula-

tion were conducted using Vivado, which may optimize

certain logic paths differently than other FPGA tools,

potentially skewing comparative resource usage.

• Static Test Environment: The test benches used fixed-

size arrays and static input sets. A dynamic, data-

dependent analysis is needed to generalize performance

results across variable input patterns.

Overall, while all three algorithms were successfully real-

ized on hardware, Bitonic Sort emerges as the most FPGA-

friendly due to its highly parallel structure, moderate power

profile, and minimal control complexity.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

This study successfully explored and compared the

FPGA- based implementations of three fundamental sorting

algo- rithms—Selection Sort, Merge Sort, and Bitonic

Sort—with a focus on performance, resource utilization, and

power effi- ciency. Through detailed simulation and

synthesis on Xilinx FPGA tools, the findings affirm that:

• Selection Sort offers simplicity in design and ease of

implementation but suffers from poor scalability and

excessive I/O utilization, making it suitable only for

small, deterministic tasks.

• Merge Sort provides a good trade-off between

complex- ity and performance, with O(n log n) time

complexity and low resource usage. However, its

recursive nature and higher power consumption present

integration challenges for resource-constrained

systems.

• Bitonic Sort demonstrated superior performance in

terms of execution speed and hardware parallelism. Its

struc- tured data flow and low latency make it highly

compatible with FPGA platforms, particularly for real-

time applica- tions.

• Finite State Machines (FSMs) enabled predictable

con- trol of algorithmic steps and reduced design errors by

organizing state transitions effectively for each sorting

algorithm.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 247

The comparative analysis highlights the importance of se-

lecting the appropriate sorting strategy based on the system

requirements—whether simplicity, throughput, or hardware

efficiency is prioritized.

B. Future Work

Building upon the current study, the following directions are

proposed for future research:

• Dynamic Dataset Support: Extend the system to handle

variable-length inputs and streaming data using adaptive

buffer mechanisms and real-time FSM control.

• Pipelined Architectures: Design pipelined versions of

Merge and Bitonic Sort to further reduce latency and

improve throughput for larger datasets.

• Power Optimization: Implement dynamic voltage and

frequency scaling (DVFS) techniques and explore low-

power IPs to address the thermal and power overheads,

especially in Merge Sort.

• Hardware Acceleration Frameworks: Integrate sorting

modules into heterogeneous computing platforms (e.g.,

FPGA–CPU co-design) for data-centric applications like

image processing, database acceleration, or real-time an-

alytics.

• Application-Specific Tuning: Optimize and tailor sorting

logic for domain-specific needs such as bioinformatics,

networking (packet sorting), or cryptography (key sort-

ing).

The insights from this work pave the way for the efficient

design of high-performance, reconfigurable, and scalable sort-

ing accelerators in modern embedded and high-performance

computing systems.

REFERENCES

[1] M. Ajtai, J. Komlo´s, and E. Szemere´di, “An O(n log n) sorting net-
work,” in Proc. 15th Annu. ACM Symp. Theory Comput., 1983, pp. 1–9.

[2] A. Farmahini-Farahani, H. J. Duwe III, M. J. Schulte, and K. Compton,
“Modular design of high-throughput, low-latency sorting units,” IEEE
Trans. Comput., vol. 62, no. 7, pp. 1389–1402, 2012.

[3] G. Graefe, “Implementing sorting in database systems,” ACM Comput.
Surv. (CSUR), vol. 38, no. 3, p. 10, 2006.

[4] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha, “GPUTeraSort:
High performance graphics co-processor sorting for large database
management,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2006,
pp. 325–336.

[5] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel, “Computation
on stochastic bit streams: Digital image processing case studies,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 3, pp. 449–462,
2013.

[6] K. Ratnayake and A. Amer, “An FPGA architecture of stable sorting on
a large data volume: Application to video signals,” in Proc. 41st Annu.
Conf. Inf. Sci. Syst., 2007, pp. 431–436.

[7] M. H. Najafi, D. J. Lilja, M. D. Riedel, and K. Bazargan, “Low-cost
sorting network circuits using unary processing,” IEEE Trans. VLSI Syst.,
vol. 26, no. 8, pp. 1471–1480, 2018.

[8] M. H. Najafi, D. J. Lilja, M. Riedel, and K. Bazargan, “Power and area
efficient sorting networks using unary processing,” in Proc. IEEE Int.
Conf. Comput. Design (ICCD), 2017, pp. 125–128.

[9] B. R. Gaines, “Stochastic computing systems,” in Advances in Informa-
tion Systems Science, Springer, 1969, pp. 37–172.

[10] W. Qian and M. D. Riedel, “The synthesis of robust polynomial arith- metic
with stochastic logic,” in Proc. 45th ACM/IEEE Design Autom. Conf., 2008,
pp. 648–653.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 248

[11] B. Li, M. H. Najafi, B. Yuan, and D. J. Lilja, “Quantized neural
networks with new stochastic multipliers,” in Proc. IEEE Int. Symp.
Quality Electron. Design, 2018, pp. 376–382.

[12] A. Ren et al., “SC-DCNN: Highly-scalable deep convolutional neural
network using stochastic computing,” ACM SIGPLAN Notices, vol.
52, no. 4, pp. 405–418, 2017.

[13] B. Li, M. H. Najafi, and D. J. Lilja, “An FPGA implementation of a
restricted Boltzmann machine classifier using stochastic bit streams,”
in Proc. IEEE Int. Conf. Appl.-Specific Syst., Archit. Processors,
2015, pp. 68–69.

[14] M. H. Najafi et al., “Using resolution splitting to enhance performance
of deterministic bit-stream computing,” in Proc. Int. Workshop Logic
Synth., 2018.

[15] B. Li, Y. Qin, B. Yuan, and D. J. Lilja, “Neural network classifiers
using a hardware-based approximate activation function with a hybrid
stochastic multiplier,” J. Emerg. Technol. Comput. Syst., vol. 15, no.
1,
p. 12, 2019.

[16] J. Yu et al., “Accurate and efficient stochastic computing hardware for
convolutional neural networks,” in Proc. IEEE Int. Conf. Comput.
Design (ICCD), 2017, pp. 105–112.

[17] B. Li, M. H. Najafi, and D. J. Lilja, “Low-cost stochastic hybrid
multiplier for quantized neural networks,” ACM J. Emerg. Technol.
Comput. Syst., vol. 15, no. 2, p. 18, 2019.

[18] R. Chen, S. Siriyal, and V. Prasanna, “Energy and memory efficient
mapping of bitonic sorting on FPGA,” in Proc. ACM/SIGDA Int.
Symp. Field-Program. Gate Arrays, 2015, pp. 240–249.

[19] B. Li, M. H. Najafi, and D. J. Lilja, “Using stochastic computing to
reduce the hardware requirements for a restricted Boltzmann machine
classifier,” in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate
Arrays, 2016, pp. 36–41.

[20] A. Alaghi, C. Li, and J. P. Hayes, “Stochastic circuits for real-time
image-processing applications,” in Proc. 50th Annu. Design Autom.
Conf., 2013, pp. 1–6.

[21] S. R. Faraji et al., “Energy-efficient convolutional neural networks
with deterministic bit-stream processing,” in Proc. Design, Autom.
Test Eur. Conf. Exhibit. (DATE), 2019, pp. 1757–1762.

[22] H. Sim and J. Lee, “A new stochastic computing multiplier with
application to deep convolutional neural networks,” in Proc. 54th
Annu. Design Autom. Conf., 2017, pp. 1–6.

[23] F. Neugebauer, I. Polian, and J. P. Hayes, “Building a better random
number generator for stochastic computing,” in Proc. Euromicro
Conf. Digit. Syst. Design (DSD), 2017, pp. 1–8.

[24] M. Yang et al., “Towards theoretical cost limit of stochastic number
generators for stochastic computing,” in Proc. IEEE Comput. Soc.
Annu. Symp. VLSI, 2018, pp. 154–159.

[25] K. Kim, J. Lee, and K. Choi, “An energy-efficient random number
generator for stochastic circuits,” in Proc. 21st Asia South Pacific
Design Autom. Conf. (ASP-DAC), 2016, pp. 256–261.

[26] D. Jenson and M. Riedel, “A deterministic approach to stochastic
computation,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), 2016, pp. 1–8.

[27] C. Chakrabarti, “Sorting network-based architectures for median
filters,” IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process.,
vol. 40, no. 11, pp. 723–727, 1993.

[28] J. E. Stine et al., “FreePDK: An open-source variation-aware design
kit,” in Proc. IEEE Int. Conf. Microelectron. Syst. Educ., 2007, pp.
173–174.

