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1. Introduction 

In 2014, Salama,  Smarandache and Valeri [9] initiate  idea of Neutrosophic closed sets and 

Neutrosophic continuous functions. Salama, Alblowi [11] launch  the conceptualization of  

generalized Neutrosophic set and generalized Neutrosophic topological spaces. Wadel and 

Smarandache [14] popularized NOS. Ishwarya and Bageerathi [8] introduced the view of NSO sets 

in Neutrosophic topological spaces. Rajeshwaran N and Chandramathi N [25]   introduced the 

Neutrosophic generalized semi pre closed sets in Neutrosophic topological spaces. This manuscript 

we establish  Neutrosophic generalized semi pre continuous mapping.. We study their concepts of 

Neutrosophic generalized semi pre continuous mapping. 

 

2. Preliminaries 

Definition 2.1: [10] A neutrosophic topology (NT for short) a non-empty set X is a family τN of 

neutrosophic subsets in X satisfying the following axioms 

 (NT1 )0N, 1N ∈ τN 

 (NT2 )G1 ∩ G2 ∈ τN 

 (NT3 ) ∪ Gi ∈ τN , ∀{Gi: i ∈ J} ⊆ τN 

Here  (X1 , τN)    is called a neutrosophic topological space (NTS for short). 

Definition 2.2: [10] Let A1𝑎𝑛𝑑 A2  be two Neutrosophic Sets (NS for Short) of the form  

 A1 = {⟨X, μA1
(X), σA1

(X), γA1
(X)⟩: xϵX} , A2 = {⟨X, μA2

(X), σA2
(X), γA2

(X)⟩: xϵX} . 

(a) A1 ⊆ A2 if and only if μA1
(X) ≤ μA2

(X), σA1
(X) ≤ σA2

(X) and γA1
(X) ≥ γA2

(X) for all x ∈ X  

(b) A1
C = {⟨X, γA1

(X), 1 − σA1
(X), μA1

(X)⟩: xϵX}  

 (c)A1 ∩ A2 = {⟨X, μA1
(X)⋀μA2

(X), σA1
(X) ⋀ σA2

(X), γA1
(X)⋁γA2

(X)⟩: xϵX} 

 (d) A1 ∪ A2 = {⟨X, μA1
(X)⋁μA2

(X), σA1
(X) ⋁ σA2

(X), γA1
(X)⋀γA2

(X)⟩: xϵX} 

We can use the symbol  A1 = {⟨X, μA(X), σA(X), γA(X)⟩: xϵX} 

The Neutrosophic Sets define by  0N = {〈X, 0,0,1〉 ∶ x ∊ X}  and 1N = {〈X, 1,1,0〉 ∶ x ∊ X}.  

Definition 2.3: [10] Let (X, τ)  be an NTS and A = 〈x, μ𝐴, σA, γ𝐴〉 be an NTS in X. Then the 

neutrosophic interior and an neutrosophic closure are defined by 

int(A) =∪ {G/G is a NOS in X and G ⊆ A} . 

cl(A) =∩ {K/K is a NCS in X and A ⊆ K}. 
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Definition 2.4: [25] Let (Ҳ , τƝ)  be a neutrosophic topological space. A subset Ą of (Ҳ , τƝ)  is 

called Neutrosophic generalized semi pre closed [ƝƓŚƤ -closed] set if spclƝ (Ą)  ⊆ Մ ,  whenever   

Ą ⊆ Մ  and Մ is Neutrosophic open set. 

Complement of Neutrosophic generalized semi pre closed set is called the Neutrosophic generalized 

semi pre [ƝƓŚƤ -open] open set. 

Definition 2.5:[26] A Neutrosophic topological space (Ҳ , τƝ) is said to be ƝƓŚƤ normal if for any 

pair of disjoint ƝƓŚƤ closed sets Ą  and Ƀ, there exist disjoint Neutrosophic open sets M and N such 

that Ą ⊂ Մ,Ƀ ⊂ Ṿ.  

Preposition 2.5: [13] Let (X1 , τN) , (X2, σN) be two neutrosophic topological spaces, if 

 g: (X1 , τN)  → (X2, σN)  neutrosophic continuous then it is N- continuous 

Definition 2.6: [13] A neutrosophic topological space (X1 , τN)   is said to be neutrosophic T1/2 if 

any Neutrosophic closed set in (X1 , τN)  is neutrosophic closed in (X1 , τN) 

Definition 2.7: [22] A mapping g: (X1 , τN)  → (X2, σN)  is defined Neutrosophic semi continuous 

mapping if g -1 (K) is NSOS in (X1 , τN) for each NOS K  (X2, σN).  

 

3. Neutrosophic Generalized Semi Pre-Continuous mapping 

    In this section, we Introduce Neutrosophic generalized semi pre continuous mapping and 

investigate some of its properties. 

 Definition 3.1.1:  A mapping φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ) is called Neutrosophic generalized semi pre 

continuous (ƝƓŚƤ continuous for short) mapping if   φƝ
−1(Ɗ)  is ƝƓŚƤƇŚ in (Ҳ , τƝ)  for every 

ƝƇŚ  Ɗ of (Ƴ, σƝ). 

Example 3.1.2: Let Ҳ = {a, b, c},   Ƴ = {u, v, w} and 

 Ⱪ1 = {x, 〈 0.2,0.4,0.5〉, 〈0.4,0.5,0.5〉, 〈0.2,0.5,0.2〉},  Ⱪ2 =
{y, 〈 0.3,0.2,0.3〉, 〈0.4,0.5,0.5〉, 〈0.4,0.4,0.5〉} 

Then  τƝ = {0Ɲ, 1Ɲ, Ⱪ1}   and   σƝ = {0Ɲ, 1Ɲ, Ⱪ2}  are NTS on (Ҳ , τƝ)  and (Ƴ, σƝ)  respectively. 

Define a mapping φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ)    by  φƝ(a) = u, φƝ(b) = v, φƝ(c) = w . Here the 

neutrosophic set Ⱪ2
𝐶 = {y, 〈 0.3,0.8,0.3〉, 〈0.5,0.5,0.4〉, 〈0.5,0.6,0.4〉} is a neutrosophic closed set in 

(Ƴ, σƝ). Then  

φƝ
−1(Ⱪ2

𝐶) = {x, 〈 0.3,0.8,0.3〉, 〈0.5,0.5,0.4〉, 〈0.5,0.6,0.4〉}  is ƝƓŚƤƇŚ  in (Ҳ , τƝ) . Hence φƝ  is 

ƝƓŚƤ continuous mapping. 

Theorem 3.1.3:  Every Neutrosophic continuous mapping is a NGSP continuous mapping but not 

conversely. 

Proof: Let  φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ)  be Neutrosophic continuous mapping. Let Ɗ  be a ƝƇŚ in 

(Ƴ, σƝ). Then  φƝ
−1(Ɗ)  is an ƝƇŚ in (Ҳ , τƝ). Since every ƝƇŚ is a ƝƓŚƤƇŚ, φƝ

−1(Ɗ) is a 

ƝƓŚƤƇŚ in (Ҳ , τƝ). Hence φƝ is a ƝƓŚƤ continuous mapping 

Example 3.1.4: Let Ҳ = {a, b},   Ƴ = {u, v} and and  Ⱪ1 = {x, 〈 0.6,0.3,0.2〉, 〈0.5,0.2,0.3〉},  Ⱪ2 =
{y, 〈 0.5,0.4,0.3〉, 〈0.4,0.2,0.3〉}. Then  τƝ = {0Ɲ, 1Ɲ, Ⱪ1}  and   σƝ = {0Ɲ, 1Ɲ, Ⱪ2} are NTS on (Ҳ , τƝ) 

and (Ƴ, σƝ) respectively. Define a mapping φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ)   by  φƝ(a) = u, φƝ(b) = v. 

Here the neutrosophic set Ⱪ2
𝐶 = {y, 〈 0.3,0.6,0.5〉, 〈0.3,0.8,0.4〉}  is a neutrosophic closed set in 

(Ƴ, σƝ). Then φƝ
−1(Ⱪ2

𝐶) = {x, 〈 0.3,0.6,0.5〉, 〈0.3,0.8,0.4〉} is ƝƓŚƤƇŚ in (Ҳ , τƝ). Hence φƝ  is a 

ƝƓŚƤ continuous mapping. But φƝ  is not neutrosophic continuous mapping since Ⱪ2
𝐶  is 

neutrosophic closed set in (Ƴ, σƝ)  but φƝ
−1(Ⱪ2

𝐶)  is not a neutrosophic closed set in (Ҳ , τƝ)  as 

clƝ (φƝ
−1(Ⱪ2

𝐶)) = 1Ɲ ≠ φƝ
−1(Ⱪ2

𝐶). 

Theorem 3.1.5: Every ƝƓ continuous mapping is a ƝƓŚƤ continuous mapping but not conversely. 
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Proof: Let φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ) be a ƝƓ continuous mapping. Let Ɗ be a ƝƇŚ in  (Ƴ, σƝ). Then 

φƝ
−1(Ɗ) is a ƝƓƇŚ in  (Ҳ , τƝ). Since every ƝƓƇŚ is a ƝƓŚƤƇŚ, φƝ

−1(Ɗ) is a ƝƓŚƤƇŚ in 

 (Ҳ , τƝ). Hence φƝ is a ƝƓŚƤ continuous mapping. 

Example 3.1.6: Let Ҳ = {a, b} , Ƴ = {u, v} and  

Ⱪ1 = {x, 〈 0.4,0.4,0.6〉, 〈0.5,0.4,0.5〉} ,  Ⱪ2 = {𝑦, 〈 0.7,0.6,0.2〉〈 0.5,0.6,0.3〉} . Then τƝ = {0Ɲ, 1Ɲ, Ⱪ1}  

and   σƝ = {0Ɲ, 1Ɲ, Ⱪ2}  are ƝƬŚ on (Ҳ , τƝ)  and (Ƴ, σƝ)  respectively. Define a mapping φƝ ∶

(Ҳ , τƝ)  → (Ƴ, σƝ)   by φƝ(a) = u, φƝ(b) = v . Here the neutrosophic set Ⱪ2
𝐶 =

{𝑦, 〈 0.2,0.4,0.7〉〈 0.3,0.4,0.5〉}  is a neutrosophic closed set in (Ƴ, σƝ) . Then φƝ
−1(Ⱪ2

𝐶) =

{𝑥, 〈 0.2,0.4,0.7〉〈 0.3,0.4,0.5〉}  is ƝƓŚƤƇŚ  in (Ҳ , τƝ).  Hence φƝ  is a ƝƓŚƤ continuous mapping. 

But φƝ is not neutrosophic generalized continuous mapping since Ⱪ2
𝐶 is neutrosophic closed set in 

(Ƴ, σƝ) but φƝ
−1(Ⱪ2

𝐶) is not a ƝƓƇŚ  in (Ҳ , τƝ) as clƝ (φƝ
−1(Ⱪ2

𝐶)) = Ⱪ1
𝐶 .  

Theorem 3.1.7: Every ƝŚ continuous mapping is a ƝƓŚƤ continuous mapping but not conversely. 

Proof: Let φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ) be a ƝŚ continuous mapping. Let Ɗ be a ƝƇŚ in (Ƴ, σƝ). Then 

φƝ
−1(Ɗ)  is a ƝŚ ƇŚ in (Ҳ , τƝ) . Since every ƝŚ ƇŚ is a ƝƓŚƤ ƇŚ, φƝ

−1(Ɗ)  is a ƝƓŚƤ Ƈ Ś 

in(Ҳ , τƝ) . Hence φƝ is a ƝƓŚƤ continuous mapping. 

Example 3.1.8: Let Ҳ = {a, b, c} , Ƴ = {u, v, w} and  

 Ⱪ1 = {x, 〈 0.2,0.4,0.6〉, 〈0.1,0.7,0.9〉, 〈0.3,0.6,0.9〉},   
Ⱪ2 = {y, 〈 0.1,0.2,0.1〉, 〈0.4,0.7,0.6〉, 〈0.3,0.7,0.9〉}. Then  τƝ = {0Ɲ, 1Ɲ, Ⱪ1}  and   σƝ = {0Ɲ, 1Ɲ, Ⱪ2} 

are ƝƬŚ on (Ҳ , τƝ)  and (Ƴ, σƝ)  respectively. Define a mapping φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ)  by 

φƝ(a) = u, φƝ(b) = v, φƝ(c) = w . Here the neutrosophic set Ⱪ2
𝐶 =

{𝑦, 〈 0.1,0.8,0.1〉〈 0.6,0.3,0.4〉〈0.9,0.3,0.3〉}  is a neutrosophic closed set in (Ƴ, σƝ) . Then 

φƝ
−1(Ⱪ2

𝐶) = {𝑥, 〈 0.1,0.8,0.1〉〈 0.6,0.3,0.4〉〈0.9,0.3,0.3〉}  is ƝƓŚƤƇŚ  in (Ҳ , τƝ).  Hence φƝ  is a 

ƝƓŚƤ continuous mapping. But φƝ is not neutrosophic generalized continuous mapping Then φƝ is 

ƝƓŚƤ continuous mapping but not a ƝŚ continuous mapping. Since Ⱪ2
𝐶  is a ƝƇŚ in (Y , σƝ) and  

φƝ
−1(Ⱪ2

𝐶 ) is not a ƝŚƇŚ in (Ҳ , τƝ)  Since intƝ (clƝ (φƝ
−1(Ⱪ2

𝐶  ))) = 1Ɲ ⊈  φƝ
−1(Ⱪ2

𝐶  ).  

Theorem 3.1.9: Every ƝƤ continuous mapping is a ƝƓŚƤ continuous mapping but not conversely.  

Proof: Let φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ) be a ƝƤ continuous mapping.  Let Ɗ be a ƝƇŚ in (Ƴ, σƝ). Then 

φƝ
−1(Ɗ) is a ƝƤƇŚ in(Ҳ , τƝ). Since every ƝƤƇŚ is a ƝƓŚƤƇŚ, φƝ

−1(Ɗ)  is a ƝƓŚƤƇŚ in 

(Ҳ , τƝ). Hence φƝ is a ƝƓŚƤ continuous mapping. 

Example: 3.1.10: Let  Ҳ = {a, b} ,Ƴ = {u, v} and  

 Ⱪ1 = {x, 〈 0.2,0.3,0.8〉, 〈0.5,0.3,0.5〉}, Ⱪ2 = {y, 〈 0.3,0.5,0.6〉, 〈0.2,0.4,0.7〉}. Then  τƝ = {0Ɲ, 1Ɲ, Ⱪ1}  

and  σƝ = {0Ɲ, 1Ɲ, Ⱪ2}  are ƝƬ on (Ҳ , τƝ)  and (Ƴ, σƝ)  respectively Define a mapping φƝ ∶

(Ҳ , τƝ)  → (Ƴ, σƝ)   by   φƝ(a) = u, φƝ(b) = v . Here the neutrosophic set Ⱪ2
𝐶 =

{𝑦, 〈 0.6,0.5,0.3〉〈 0.7,0.6,0.2〉}  is a neutrosophic closed set in (Ƴ, σƝ) . Then φƝ
−1(Ⱪ2

𝐶) =

{𝑥, 〈 0.6,0.5,0.3〉〈 0.7,0.6,0.2〉} is ƝƓŚƤƇŚ in (Ҳ , τƝ).Then φƝ is ƝƓŚƤ continuous mapping but not 

ƝƤ continuous mapping since Ⱪ2
𝐶 is ƝƇŚ in (Ƴ, σƝ) and φƝ

−1(Ⱪ2
𝐶  )  is not a ƝƤƇŚ in (Ҳ , τƝ) . 

Theorem: 3.1.11: Every ƝŚƤ continuous mapping is a ƝƓŚƤ continuous mapping but not 

conversely.  

Proof: Let φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ) be a ƝŚƤ continuous mapping. Let Ɗ be a ƝƇŚ in (Ƴ, σƝ). Then 

φƝ
−1(Ɗ) is a ƝŚƤƇŚ in (Ҳ , τƝ) .  Since every ƝŚƤƇŚ is ƝƓŚƤƇŚ, φƝ

−1(Ɗ)  is a ƝƓŚƤƇŚ in 

(Ҳ , τƝ) . Hence  φƝ  is a ƝƓŚƤ continuous mapping.   

Example 3.1.12 : Let Ҳ = {a, b} , Ƴ = {u, v} and  
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Ⱪ1 = {x, 〈 0.4,0.4,0.6〉, 〈0.4,0.4,0.3〉},  Ⱪ2 = {y, 〈 0.4,0.5,0.6〉, 〈0.3,0.4,0.4〉}. Then  τƝ = {0Ɲ, 1Ɲ, Ⱪ1}  

and   σƝ = {0Ɲ, 1Ɲ, Ⱪ2}  are ƝƬŚ on (Ҳ , τƝ)  and (Ƴ, σƝ)  respectively. Define a mapping φƝ ∶

(Ҳ , τƝ)  → (Ƴ, σƝ)   by  φƝ(a) = u, φƝ(b) = v . Here the neutrosophic set Ⱪ2
𝐶 =

{𝑦, 〈 0.6,0.5,0.4〉〈 0.4,0.6,0.3〉}  is a neutrosophic closed set in (Ƴ, σƝ) . Then φƝ
−1(Ⱪ2

𝐶) =

{𝑥, 〈 0.6,0.5,0.4〉〈 0.4,0.6,0.3〉} is ƝƓŚƤƇŚ in (Ҳ , τƝ).  Then φƝ  is ƝƓŚƤ continuous mapping, but 

not ƝŚƤ continuous mapping. Since Ⱪ2
𝐶  is ƝƇŚ in (Ƴ, σƝ)  and φƝ

−1(Ⱪ2
𝐶)   is not a ƝŚƤƇŚ in 

(Ҳ , τƝ). 

Theorem: 3.1.13: Every Ɲα continuous mapping is a ƝƓŚƤ continuous mapping but not conversely.  

Proof: Let φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ)  be a Ɲα continuous mapping. Let Ɗ be a ƝƇŚ in (Ƴ, σƝ). Then 

 φƝ
−1( Ɗ )  is a ƝαƇŚ in (Ҳ , τƝ) . Since every ƝαƇŚ is ƝƓŚƤƇS, φƝ

−1( Ɗ )  is a ƝƓŚƤƇŚ in 

(Ҳ , τƝ). Hence  φƝ is a ƝƓŚƤ continuous mapping.   

  Example 3.1.14: Let Ҳ = {a, b} , Ƴ = {u, v} and 

 Ⱪ1 = {x, 〈 0.2,0.1,0.7〉, 〈0.4,0.4,0.7〉}, Ⱪ2 = {y, 〈 0.9,0.8,0.7〉, 〈0.2,0.4,0.6〉}. Then  

τƝ = {0Ɲ, 1Ɲ, Ⱪ1}  and   σƝ = {0Ɲ, 1Ɲ, Ⱪ2} are ƝƬŚ on (Ҳ , τƝ)  and (Ƴ, σƝ) respectively. Define a 

mapping  φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ)   by  φƝ(a) = u, φƝ(b) = v  . Here the neutrosophic set Ⱪ2
𝐶 =

{𝑦, 〈 0.7,0.2,0.9〉〈 0.6,0.6,0.2〉}  is a neutrosophic closed set in (Ƴ, σƝ) . Then φƝ
−1(Ⱪ2

𝐶) =

{𝑥, 〈 0.7,0.2,0.9〉〈 0.6,0.6,0.2〉} is ƝƓŚƤƇŚ in (Ҳ , τƝ).  Then φƝ  is ƝƓŚƤ continuous mapping, but 

not Ɲα continuous mapping. Since Ⱪ2
𝐶    is ƝƇŚ in (Ƴ, σƝ) but φƝ

−1(Ⱪ2
𝐶)  is not a ƝαƇŚ in (Ҳ , τƝ). 

Theorem: 3.1.15:  Let  φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ)  be a mapping where φƝ
−1(Ɗ)   is a ƝŖƇŚ in 

(Ҳ , τƝ)  for every ƝƇŚ Ɗ in (Ƴ, σƝ). Then φƝ is a ƝƓŚƤ continuous mapping but not conversely.  

Proof: Assume that  φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ)  is a mapping. Let Ą  be a Ɲ ƇŚ in (Ƴ, σƝ) . Then 

 φƝ
−1(Ɗ)  is a ƝŖƇŚ in (Ҳ , τƝ), by hypothesis.  Since every ƝŖƇŚ is ƝƓŚƤƇŚ, φƝ

−1(Ɗ)  is a 

ƝƓŚƤƇŚ in (Ҳ , τƝ). Hence φƝ is a ƝƓŚƤ continuous mapping. 

Example 3.1.16: Let Ҳ = {a, b} , Ƴ = {u, v} and 

 Ⱪ1 = {x, 〈 0.5,0.6,0.5〉, 〈0.5,0.4,0.5〉}, Ⱪ2 = {y, 〈 0.5,0.3,0.5〉, 〈0.5,0.7,0.5〉}. Then  

τƝ = {0Ɲ, 1Ɲ, Ⱪ1}  and   σƝ = {0Ɲ, 1Ɲ, Ⱪ2} are ƝƬŚ on (Ҳ , τƝ)  and (Ƴ, σƝ) respectively. Define a 

mapping  φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ)   by  φƝ(a) = u, φƝ(b) = v  . Here the neutrosophic set Ⱪ2
𝐶 =

{𝑦, 〈 0.5,0.7,0.5〉〈 0.5,0.3,0.5〉}  is a neutrosophic closed set in (Ƴ, σƝ) . Then φƝ
−1(Ⱪ2

𝐶) =

{𝑥, 〈 0.5,0.7,0.5〉〈 0.5,0.3,0.5〉} is ƝƓŚƤƇŚ in (Ҳ , τƝ).  Then φƝ  is ƝƓŚƤ continuous mapping, but 

not ƝŖ continuous mapping. Since Ⱪ2
𝐶    is ƝƇŚ in (Ƴ, σƝ) but  φƝ

−1(Ⱪ2
𝐶)  is not a ƝŖƇŚ in (Ҳ , τƝ). 

Theorem: 3.1.17:  Let  φƝ: (Ҳ1 , τƝ)  → (Ҳ2, σƝ)  be a ƝƓŚƤ continuous mapping and let ΨƝ ∶

(Ҳ2, σƝ)   → (Ҳ3, ɳƝ) be a Ɲ continuous mapping, then φƝ ₀ ΨƝ: (Ҳ1 , τƝ)   → (Ҳ3, ɳƝ) is a ƝƓŚƤ 

continuous mapping.  

Proof: Let Ɗ be a ƝƇŚ in (Ҳ3, ɳN). Then ΨƝ
−1(Ɗ) is a ƝƇŚ in (Ҳ2, σƝ), by hypothesis. Since φƝ is 

a ƝƓŚƤ continuous mapping,   φƝ
−1(ΨƝ

−1
(Ɗ)) is a ƝƓŚƤƇŚ in(Ҳ1 , τƝ). Hence φƝ ₀ ΨƝ  is a 

ƝƓŚƤ continuous mapping. 

Theorem: 3.1.18: If   φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ)  is a ƝƓŚƤ continuous mapping , then for each 

ƝƤ(α,β,γ) of (Ҳ , τƝ) and each Ą ∊ σƝ  such that  φƝ(ƝƤ(α,β,γ)) ∊ Ą, there exists a ƝƓŚƤOŚ Ƀ  of 

(Ҳ , τƝ) such that  ƝƤ(α,β,γ) ∊ Ƀ and φƝ(Ƀ) ⊆ Ą. 

Proof: Let ƝƤ(α,β,γ) be a ƝƤ of (Ҳ , τƝ) and Ą ∊ σƝ such that φƝ(ƝƤ(α,β,γ)) ∊ Ą. Put Ƀ = φƝ
−1(Ą). 

Then by hypothesis, Ƀ  is a ƝƓŚƤOŚ  in (Ҳ , τƝ)  such that ƝƤ(α,β,γ) ∊ Ƀ  and φƝ(Ƀ) =

φƝ(φƝ
−1(Ą))) ⊆ Ą. 
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Theorem: 3.1.19: If φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ)  is a ƝƓŚƤ continuous mapping, then for each 

ƝƤ(α,β,γ)  of (Ҳ , τƝ)  and each Ą ∊ σƝ  such that  φƝ(ƝƤ(α,β,γ))qĄ , there exists a ƝƓŚƤOŚ Ƀ  of 

(Ҳ , τƝ) such that ƝƤ(α,β,γ)qɃ and φƝ(Ƀ) ⊆ Ą. 

Proof: Let ƝP(α,β,γ) be a ƝƤ of Ҳ and Ą ∊ σƝ  such that φƝ(ƝƤ(α,β,γ))qĄ. Put Ƀ = φƝ
−1(Ą). Then 

by hypothesis, Ƀ is a ƝƓŚƤƠŚ in (Ҳ , τƝ)  such that ƝP(α,β,γ)qɃ and φƝ(Ƀ) = φƝ(φƝ
−1(Ą))) ⊆ Ą. 

Theorem: 3.1.20: Let φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ) is a ƝƓŚƤ continuous mapping. Then φƝ is a ƝŚƤ 

continuous mapping if (Ҳ , τƝ) is a ƝŚƤƬ1/2 space. 

Proof: Let Ɗ be a ƝƇŚ in (Ƴ, σƝ). Then φƝ
−1(Ɗ) is a ƝƓŚƤƇŚ in (Ҳ , τƝ), by hypothesis. Since 

(Ҳ , τƝ)  is a ƝŚƤƬ1/2  space, φƝ
−1(Ɗ)  is a ƝŚƤƇŚ in (Ҳ , τƝ) . Hence φƝ  is a ƝŚƤ continuous 

mapping. 

Theorem: 3.1.21:  Let  φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ)  be a ƝƓŚƤ continuous mapping and let 

ΨƝ: (Ƴ, σƝ)   → (Z, ɳƝ)  be a ƝƓ continuous mapping where (Ƴ, σƝ)  is a ƝƬ1/2  space. Then  

φƝ ₀ ΨƝ ∶ (Ҳ , τƝ)   → (Z, ɳƝ) is a ƝƓŚƤ continuous mapping.   

Proof: Let Ɗ be a ƝƇŚ in (Z, ɳƝ). Then ΨƝ
−1(Ɗ)  is a ƝƓƇS in (Ƴ, σƝ), by hypothesis. Since 

(Ƴ, σƝ) is a ƝƬ1/2 space, ΨƝ
−1(Ɗ) is a ƝƇŚ in (Ƴ, σƝ). Therefore φƝ

−1(ΨƝ
−1

(Ɗ)) is a ƝƓŚƤƇŚ in 

(Ҳ , τƝ), by hypothesis. Hence φƝ ₀ ΨƝ is a ƝƓŚƤ continuous mapping.  

Theorem: 3.1.22: Let φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ) be a mapping from ƝƬ (Ҳ , τƝ)  to (Ƴ, σƝ). Then the 

following conditions are equivalent if (Ҳ , τƝ)  and (Ƴ, σƝ)  are ƝŚƤƬ1/2 spaces: 

(i) φƝ  is a ƝƓŚƤ continuous mapping, 

(ii) φƝ
−1(Ƀ) is a ƝƓŚƤOŚ in (Ҳ , τƝ) for each ƝOŚ Ƀ in (Ƴ, σƝ). 

(iii) For every ƝƤ p(α,β,γ) in (Ҳ , τƝ)  and for every ƝOŚ Ƀ in (Ƴ, σƝ) such that φƝ(ƝƤp(α,β,γ)) ∈

Ƀ, there exists a ƝƓŚƤOŚ Ą in (Ҳ , τƝ)  such that (p(α,β,γ)) ∈ Ą and φƝ(Ą) ⊆ Ƀ. 

Proof: (i)⇔(ii) is obvious, since φƝ
−1(ĄC) = (φƝ

−1(A))C.  

(ii)⇒(iii) Let Ƀ be a any ƝƠŚ in (Ƴ, σƝ) and let (Ɲp(α,β,γ)) ∈ (Ҳ , τƝ).  Given φƝ(Ɲp(α,β,γ)) ∈ Ƀ. By 

hypothesis φƝ
−1(Ƀ)  is a ƝƓŚƤOŚ in (Ҳ , τƝ)  . Take Ą = φƝ

−1(Ƀ) .  Now  Ɲp(α,β,γ) ∈

 φƝ
−1(φƝ(Ɲp(α,β,γ))). Therefore  φƝ

−1(φƝ(Ɲp(α,β,γ))) ∈ φƝ
−1(Ƀ) = Ą. This implies (Ɲp(α,β,γ)) ∈

Ą and φƝ(Ą) = φƝ(φƝ
−1(Ƀ)) ⊆ Ƀ. 

(iii)⇒(i) Let Ą be a ƝƇŚ in (Ƴ, σƝ). Then its complement, say Ƀ = ĄC is a ƝOŚ in (Ƴ, σƝ). Let 

Ɲp(α,β,γ) ∈ (Ҳ , τƝ) and φƝ(Ɲp(α,β,γ)) ∈ Ƀ. Then there exists a ƝƓŚƤOŚ, say Ƈ in (Ҳ , τƝ) such that 

Ɲp(α,β,γ) ∈ Ƈ  and φƝ(Ƈ) ⊆ Ƀ . Now Ƈ ⊆ φƝ
−1(φƝ(Ƈ)) ⊆ φƝ

−1(Ƀ) . Thus Ɲp(α,β,γ) ∈ φƝ
−1(Ƀ) . 

Therefore φƝ
−1(Ƀ) is a ƝƓŚƤƠŚ in (Ҳ , τƝ) . That is φƝ

−1(ĄC) is a ƝƓŚƤOŚ  in (Ҳ , τƝ) and hence  

φƝ
−1(Ą) is a ƝƓŚƤƇŚ in (Ҳ , τƝ). Thus φƝ is a ƝƓŚƤ continuous mapping. 

Theorem: 3.1.23: Let φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ) be a mapping from ƝƬ (Ҳ , τƝ) to ƝƬ (Ƴ, σƝ). Then 

the following conditions are equivalent if (Ҳ , τƝ)  and (Ƴ, σƝ) are ƝŚƤƬ1/2 spaces: 

(i) φƝ  is a ƝƓŚƤ continuous mapping, 

(ii) For each ƝƤ p(α,β,γ) in (Ҳ , τƝ) and for every Neutrosophic neighborhood (ƝƝ for short) Ą 

of φƝ(Ɲp(α,β,γ)), there exists a ƝƓŚƤƠŚ Ƀ in (Ҳ , τƝ)  such that (Ɲp(α,β,γ)) ∈ Ƀ ⊆ φƝ
−1(Ą). 

(iii) For each ƝƤ p(α,β,γ) in (Ҳ , τƝ) and for every ƝƝ Ą of φƝ(Ɲp(α,β,γ)), there exists a ƝƓŚƤƠŚ 

Ƀ in (Ҳ , τƝ)  such that (Ɲp(α,β,γ)) ∈ Ƀ and φƝ(Ƀ) ⊆ Ą. 

Proof: (i)⇒(ii) Let (Ɲp(α,β,γ)) ∈ (Ҳ , τƝ) and let Ą be a ƝƝ A of φƝ(Ɲp(α,β,γ)).  Then there exists a 

ƝƠŚ Ƈ in (Ƴ, σƝ)   such that φƝ(Ɲp(α,β,γ)) ∈ Ƈ ⊆ Ą. Since φƝ  is a ƝƓŚƤ continuous mapping, 
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φƝ
−1(Ƈ) = Ƀ(say), is a ƝƓŚƤOŚ in (Ҳ , τƝ)  and (Ɲp(α,β,γ)) ∈ Ƀ ⊆ φƝ

−1(Ą). 

(ii)⇒(iii) Let (Ɲp(α,β,γ)) ∈ (Ҳ , τƝ) and let Ą be a ƝƝ of φƝ(Ɲp(α,β,γ)). Then there exists a ƝƓŚƤOŚ 

Ƀ in (Ҳ , τƝ)   such that (Ɲp(α,β,γ)) ∈ Ƀ ⊆ φƝ
−1(Ą), by hypothesis. Therefore (Ɲp(α,β,γ)) ∈ Ƀ  and 

φƝ(Ƀ) ⊆ φƝ(φƝ
−1(Ą)) ⊆ Ą . 

(iii)⇒(i) Let Ƀ  be a ƝOŚ in (Ƴ, σƝ)    and let (Ɲp(α,β,γ)) ∈ φƝ
−1(Ƀ) . Then φƝ(Ɲp(α,β,γ)) ∈ Ƀ . 

Therefore Ƀ is a ƝƝ of φƝ(Ɲp(α,β,γ)). Since Ƀ is ƝOŚ, by hypothesis there exists a ƝƓŚƤOŚ Ą in 

(Ҳ , τƝ)  such that (Ɲp(α,β,γ)) ∈ Ą ⊆ φƝ
−1(φƝ(Ą)) ⊆ φƝ

−1
(Ƀ). Therefore φƝ

−1(Ƀ) is a ƝƓŚƤOŚ 

in (Ҳ , τƝ). Hence φƝ is a ƝƓŚƤ continuous mapping. 

Theorem: 3.1.24: Let φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ) be a mapping from ƝƬ (Ҳ , τƝ)  to ƝƬ (Ƴ, σƝ). Then 

the following conditions are equivalent if (Ҳ , τƝ) is a ƝŚƤƬ1/2 spaces: 

(i) φƝ  is a ƝƓŚƤ continuous mapping, 

(ii) If Ƀ is a ƝOŚ in (Ƴ, σƝ)  then φƝ
−1(Ƀ) is a ƝƓŚƤOŚ in (Ҳ , τƝ), 

(iii)  φƝ
−1(intƝ(Ƀ)) ⊆ clƝ(intƝ (clƝ (φƝ

−1(Ƀ)))) for every ƝŚ Ƀ in (Ƴ, σƝ)  . 

Proof: (i)⇔(ii) is obviously true by Theorem 3.1.22 

(ii)⇒(iii) Let Ƀ be any ƝŚ in (Ƴ, σƝ). Then intƝ(Ƀ) is a ƝƠŚ in (Ƴ, σƝ). Then φƝ
−1(intƝ(Ƀ)) is a 

ƝƓŚƤOŚ in (Ҳ , τƝ).  Since (Ҳ , τƝ)  is a  ƝŚƤƬ1/2  space, φƝ
−1(intƝ(Ƀ)) is a ƝŚƤOŚ in (Ҳ , τƝ) . 

Therefore  

φƝ
−1(intƝ(Ƀ)) ⊆ clƝ(intƝ (clƝ (φƝ

−1(intƝ(Ƀ))))) ⊆ clƝ(intƝ (clƝ (φƝ
−1(Ƀ)))). 

(iii)⇒(i) Let Ƀ  be a ƝOŚ in (Ƴ, σƝ) . By hypothesis φƝ
−1(Ƀ) = φƝ

−1(intƝ(Ƀ)) ⊆

clƝ(intƝ (clƝ (φƝ
−1(Ƀ)))). This implies φƝ

−1(Ƀ) is ƝβOŚ in (Ҳ , τƝ). Therefore it is a ƝƓŚƤOŚ in 

(Ҳ , τƝ),.  and hence  φƝ is a ƝƓŚƤ continuous mapping, by Theorem 3.1.22 

Theorem: 3.1.25: Let φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ) be a mapping from ƝƬ (Ҳ , τƝ)  to ƝƬ (Ƴ, σƝ). Then 

the following conditions are equivalent if (Ҳ , τƝ)   and (Ҳ , τƝ)   are ƝŚƤƬ1/2 spaces: 

(i)     φƝ  is a ƝƓŚƤ continuous mapping, 

(ii) intƝ (clƝ(intƝ (φƝ
−1(Ƀ))) ⊆ φƝ

−1(spclƝ(Ƀ)) for each ƝƇŚ Ƀ in (Ƴ, σƝ), 

(iii) φƝ
−1(spintƝ(Ƀ)) ⊆ clƝ(intƝ(clƝ(φƝ

−1(Ƀ)))) for each ƝOŚ Ƀ of (Ƴ, σƝ), 

(iv) φƝ(intƝ (clƝ(intƝ((Ą)))) ⊆ clƝ(φƝ(Ą)) for each ƝŚ Ą of (Ҳ , τƝ)   . 

Proof: (i)⇒(ii) Let Ƀ be a ƝƇŚ in (Ƴ, σƝ). Then φƝ
−1(Ƀ) is a ƝƓŚƤƇŚ in (Ҳ , τƝ)   . Since (Ҳ , τƝ)    

is a ƝŚƤƬ1/2  space, φƝ
−1(Ƀ)  is a ƝŚƤ Ƈ Ś. Therefore intƝ (clƝ(intƝ (φƝ

−1(Ƀ))) ⊆ φƝ
−1(Ƀ) =

φƝ
−1(spclƝ(Ƀ)). 

(ii)⇒(iii) can be easily proved by taking complement in (ii). 

(iii)⇒(iv) Let Ą ∈ (Ҳ , τƝ)   . Taking Ƀ = φƝ(Ą)  we have Ą ⊆ φƝ
−1(Ƀ) . Here  intƝ (φƝ(Ą)) =

intƝ(Ƀ)  is a ƝOŚ in (Ƴ, σƝ) . Then (iii) implies that φƝ
−1(spintƝ(intƝ(Ƀ)) ⊆

clƝ(intƝ(clƝ(φƝ
−1(intƝɃ)))) ⊆ clƝ(intƝ(clƝ(φƝ

−1(Ƀ)))) . Now we have clƝ(intƝ(clƝ(Ą𝐶)))𝐶 ⊆

clƝ(intƝ(clƝ(φƝ
−1(Ƀ𝐶)))𝐶 ⊆ φƝ

−1(spintƝ(intƝ(ɃC)))C . This implies intƝ (clƝ(intƝ((Ą))) ⊆

φƝ
−1(spclƝ (clƝ(Ƀ))) . Therefore φƝ (intƝ (clƝ(intƝ((Ą)))) ⊆ φƝ (φƝ

−1 (spclƝ (clƝ(Ƀ)))) ⊆

clƝ(Ƀ) = clƝ(φƝ(Ą)). 
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(iv)⇒(i) Let Ƀ  be a any ƝƇŚ in (Ƴ, σƝ) . Then φƝ
−1(Ƀ)  is a ƝŚ in (Ҳ , τƝ)   . By hypothesis 

φƝ (intƝ (clƝ(intƝ ((φƝ
−1(Ƀ))))) ⊆ clƝ(φƝ(φƝ

−1(Ƀ))) ⊆ clƝ(Ƀ) = Ƀ. Now 

intƝ(clƝ(intƝ(φƝ
−1(Ƀ)))) ⊆ φƝ

−1(φƝ(intƝ(clƝ(intƝ(φƝ
−1(Ƀ)))) ⊆ φƝ

−1(Ƀ) . This implies 

φƝ
−1(Ƀ) is a ƝβƇŚ and hence it is a ƝƓŚƤƇŚ in (Ҳ , τƝ). Thus φƝ  is a ƝƓŚƤ continuous mapping.  

 

Theorem: 3.1.26: A mapping φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ)  is a ƝƓŚƤ continuous mapping if 

clƝ(intƝ(clƝ(φƝ
−1(Ą)))) ⊆ φƝ

−1(clƝ(Ą)) for every ƝŚ Ą in (Ƴ, σƝ). 

Proof: Let Ą  be a ƝOŚ in (Ƴ, σƝ) . Then Ą𝐶  is a ƝƇŚ in (Ƴ, σƝ) .Therefore clƝ(Ą𝐶) = Ą𝐶 . By 

hypothesis, 

 clƝ(intƝ(clƝ(φƝ
−1(Ą𝐶)))) ⊆ φƝ

−1 (clƝ(Ą𝐶)) = φƝ
−1(Ą𝐶). Now (intƝ(clƝ(intƝ(φƝ

−1(Ą)))))C =

clƝ(intƝ(clƝ(φƝ
−1(Ą𝐶)))) ⊆ φƝ

−1(Ą𝐶) = (φƝ
−1(Ą))C . This implies  φƝ

−1(Ą) ⊆

intƝ(clƝ(intƝ(φƝ
−1(Ą)))). Hence  φƝ

−1(Ą) is a ƝαƠŚ in (Ҳ , τƝ) and hence it is a  ƝƓŚƤOŚ in 

(Ҳ , τƝ). Therefore φƝ is a ƝƓŚƤ continuous mapping, by Theorem 3.1.22.  

Theorem: 3.1.27: Let φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ) be a mapping from ƝƬ (Ҳ , τƝ)  to ƝƬ (Ƴ, σƝ). Then 

the following conditions are equivalent if (Ҳ , τƝ)  is a ƝŚƤƬ1/2  spaces: 

(i) φƝ  is a ƝƓŚƤ continuous mapping, 

(ii) φƝ
−1(Ƀ) is a ƝƓŚƤƇŚ in (Ҳ , τƝ) for every ƝƇŚ Ƀ in (Ƴ, σƝ), 

(iii) intƝ(clƝ(intƝ(φƝ
−1(Ą)))) ⊆ φƝ

−1(clƝ(Ą)) for every ƝŚ Ą in (Ƴ, σƝ). 

Proof: (i)⇔(ii) is obviously true by Definition 3.1.1 

(ii)⇒(iii) Let Ą be a ƝŚ in (Ƴ, σƝ). Then clƝ(Ą) is a ƝƇŚ in (Ƴ, σƝ).. By hypothesis,  φƝ
−1(clƝ(Ą)) 

is a ƝƓŚƤƇŚ in (Ҳ , τƝ). Since (Ҳ , τƝ) is a ƝŚƤƬ1/2 space, φƝ
−1(clƝ(Ą)) is a ƝŚƤƇŚ  in (Ҳ , τƝ). 

Therefore we have intƝ(clƝ(intƝ(φƝ
−1(clƝ(Ą))))) ⊆ φƝ

−1(clƝ(Ą)) . Now 

intƝ(clƝ(intƝ(φƝ
−1(Ą)))) ⊆ intƝ(clƝ(intƝ(φƝ

−1(clƝ(Ą))))) ⊆ φƝ
−1(clƝ(Ą)).  

(iii)⇒(i) Let Ą be a ƝƇŚ in (Ƴ, σƝ). By hypothesis intƝ (clƝ(intƝ(φƝ
−1(Ą)))) ⊆ φƝ

−1(clƝ(Ą)) =

φƝ
−1(Ą) . This implies φƝ

−1(Ą) is a ƝβƇŚ in (Ҳ , τƝ) and hence it is a ƝƓŚƤƇŚ. Thus  φƝ is a 

ƝƓŚƤ continuous mapping. 

 

3.2 NEUTROSOPHIC GENERALIZED SEMI PRE IRRESOLUTE MAPPING  

         In this part, we endeavor to offer an extensive view of ƝƓŚƤ irresolute mappings in 

Neutrosophic topological spaces, outlining their theoretical bases, fundamental attributes. 

Definition 3.2.1: A map φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ)  is called a Neutrosophic generalized semi-pre 

irresolute (ƝƓŚƤ irresolute for short) mapping if φƝ
−1(Ɗ)  is a ƝƓŚƤ closed sets in (Ҳ , τƝ) for 

every ƝƓŚƤ closed set Ɗ of (Ƴ, σƝ).  

Example 3.2.2: Let  Ҳ = {a, b} , Ƴ = {u, v} and  

Ⱪ1 = {x, 〈0.5,0.6,0.1〉 , 〈0.5,0.4,0.1〉}, Ⱪ2 = {y, 〈 0.5,0.3,0.2〉, 〈0.5,0.7,0.2〉}. Then  τƝ = {0Ɲ, 1Ɲ, Ⱪ1}  

and   σƝ = {0Ɲ, 1Ɲ, Ⱪ2}  are ƝƬŚ on (Ҳ , τƝ)  and (Ƴ, σƝ)  respectively. Define a mapping φƝ ∶

(Ҳ , τƝ)  → (Ƴ, σƝ)   by φƝ(a) = u,  φƝ(b) = v  . Here the neutrosophic set Ⱪ3 =

{y, 〈 0.3,0.3,0.7〉, 〈0.2,0.3,0.7〉} is a  ƝƓŚƤ closed set in (Ƴ, σƝ). Then φƝ  is a ƝƓŚƤ irresolute 

mapping since φƝ
−1(Ⱪ3) is ƝƓŚƤ closed set in (Ҳ , τƝ).   

Theorem: 3.2.3: If φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ)  is a ƝƓŚƤ irresolute mapping then φƝ  is a ƝƓŚƤ 

continuous mapping but not conversely. 
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Proof: Let φƝ be a ƝƓŚƤ irresolute mapping. Let Ɗ be any Neutrosophic closed sets in (Ƴ, σƝ). 

Then Ɗ is a ƝƓŚƤ closed sets and by hypothesis φƝ
−1(Ɗ) is a ƝƓŚƤ closed sets in (Ҳ , τƝ). Hence 

φƝ is a ƝƓŚƤ continuous mapping. 

Example 3.2.4: Let Ҳ = {a, b}  , Ƴ = {u, v}  and Ⱪ1 = {x, 〈0.4,0.3,0.6〉 ,  〈0.5,0.3,0.5〉} , Ⱪ2 =
{y, 〈 0.6,0.7,0.3〉, 〈0.7,0.8,0.3〉} . Then  τƝ = {0Ɲ, 1Ɲ, Ⱪ1}   and   σƝ = {0Ɲ, 1Ɲ, Ⱪ2}  are ƝƬŚ on 

(Ҳ , τƝ)  and (Ƴ, σƝ)  respectively. Define a mapping φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ)   by φƝ(a) = u, 

φƝ(b) = v  . Then φƝ  is ƝƓŚƤ continuous mapping since for a neutrosophic closed set Ⱪ2
𝐶 =

{y, 〈 0.3,0.3,0.6〉, 〈0.3,0.2,0.7〉}  in (Ƴ, σƝ) , its inverse image φƝ
−1(Ⱪ2

𝐶)  is ƝƓŚƤ closed set in 

(Ҳ , τƝ) . But φƝ  is not a ƝƓŚƤ irresolute mapping. For the neutrosophic set Ⱪ3 =

{y, 〈0.4,0.3,0.6〉, 〈0.5,0.3,0.5〉} is ƝƓŚƤ closed set in (Ƴ, σƝ) but φƝ
−1(Ⱪ3) is not a ƝƓŚƤ closed 

set in (Ҳ , τƝ).      

Theorem: 3.2.5: Let φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ)  and ΨƝ ∶ (Ƴ, σƝ) → (Z , ɳƝ)  be a ƝƓŚƤ irresolute 

mapping. Then φƝ o ΨƝ ∶ (Ҳ , τƝ) → (Z , ɳƝ) is a ƝƓŚƤ irresolute mapping. 

Proof: Let Ɗ be a ƝƓŚƤ closed set in (Z , ɳƝ). Then ΨƝ
−1(Ɗ) is a ƝƓŚƤ closed set in (Ƴ, σƝ). 

Since φƝ is a ƝƓŚƤ irresolute, φƝ
−1(ΨƝ

−1
(Ɗ)) is a ƝƓŚƤ closed set in (Ҳ , τƝ), by hypothesis. 

Hence φƝ o ΨƝ is a ƝƓŚƤ irresolute mapping. 

Theorem: 3.2.6: Let φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ) be a ƝƓŚƤ irresolute mapping and ΨƝ ∶ (Ƴ, σƝ) →

(Z , ɳƝ) be a ƝƓŚƤ continuous mapping. Then ΨƝ o φƝ ∶ (Ҳ , τƝ) → (Z , ɳƝ) is a ƝƓŚƤ continuous 

mapping. 

Proof: Let Ɗ be a Neutrosophic closed set in (Z , ɳƝ). Then ΨƝ
−1(Ɗ) is a ƝƓŚƤ closed set in 

(Ƴ, σƝ). Since φƝ is a ƝƓŚƤ irresolute mapping, φƝ
−1(ΨƝ

−1
(Ɗ)) is a ƝƓŚƤ closed set in (Ҳ , τƝ). 

Hence φƝ o ΨƝ is a ƝƓŚƤ continuous mapping. 

Theorem: 3.2.7: Let φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ) be a mapping from a ƝƬ (Ҳ , τƝ) into a ƝƬ (Ƴ, σƝ). 

Then the following conditions are equivalent if (Ҳ , τƝ) and (Ƴ, σƝ) are ƝŚƤƬ1/2 spaces: 

(i)  φƝ is a ƝƓŚƤ irresolute mapping, 

(ii) φƝ
−1(Ɗ) is a ƝƓŚƤ open set in (Ҳ , τƝ) for each ƝƓŚƤ open set in  (Ƴ, σƝ), 

(iii) φƝ
−1(spintƝ(Ɗ)) ⊆ spintƝ(φƝ

−1(Ɗ)) for each ƝŚ Ɗ of (Ƴ, σƝ), 

(iv) spclƝ(φƝ
−1(Ɗ)) ⊆ φƝ

−1(spclƝ(Ɗ)) for each ƝŚ Ɗ of (Ƴ, σƝ). 

Proof: (i)⇔(ii) is obvious, since φƝ
−1(ɃC) = (φƝ

−1(Ƀ))C. 

(ii)⇒(iii) Let Ɗ  be any ƝŚ in (Ƴ, σƝ)  and spintƝ(Ɗ) ⊆ Ɗ . Also φƝ
−1(spintƝ(Ɗ)) ⊆ φƝ

−1(Ƀ) . 

Since spintƝ(Ɗ)  is a ƝŚƤ open set in (Ƴ, σƝ) , it is a ƝƓŚƤ open set in (Ƴ, σƝ) . Therefore 

φƝ
−1(spintƝ(Ɗ)) is a ƝƓŚƤ open set in (Ҳ , τƝ), by hypothesis. Since (Ҳ , τƝ) is a ƝŚƤƬ1/2 space,  

φƝ
−1(spintƝ(Ɗ))  is a ƝŚƤ open set in (Ҳ , τƝ) .  Hence 

φƝ
−1 (spintƝ(Ɗ))=spintƝ(φƝ

−1 (spintƝ(Ɗ))) ⊆ spintƝ(φƝ
−1(Ɗ)) 

(iii)⇒(iv) is obvious by taking complement in (iii). 

(iv)⇒(i) Let Ɗ be a ƝƓŚƤ closed set in (Ƴ, σƝ). Since (Ƴ, σƝ) is a ƝŚƤƬ1/2 space,  Ɗ is a ƝŚƤ 

closed sets in (Ƴ, σƝ) and spclƝ(Ɗ) = Ɗ. Hence φƝ
−1(Ɗ) = φƝ

−1(spclƝ(Ɗ)) ⊇ spclƝ(φƝ
−1(Ɗ)), 

by hypothesis. But φƝ
−1(Ɗ) ⊆ spclƝ(φƝ

−1(Ɗ)) . Therefore spclƝ(φƝ
−1(Ɗ)) = φƝ

−1(Ɗ) . This 

implies φƝ
−1(Ɗ) is a ƝŚƤ closed sets and hence it is a ƝƓŚƤ closed set in (Ҳ , τƝ). Thus φƝ is a 

ƝƓŚƤ irresolute mapping.     
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Theorem: 3.2.8: Let φƝ ∶ (Ҳ , τƝ)  → (Ƴ, σƝ) be a ƝƓŚƤ irresolute mapping from a ƝƬ (Ҳ , τƝ) into 

(Ƴ, σƝ) . Then φƝ
−1(Ɗ) ⊆ spintƝ(φƝ

−1(clƝ(intƝ(clƝ(Ɗ)))))  for every ƝƓŚƤ open set Ɗ  in 

(Ƴ, σƝ), if (Ҳ , τƝ) and (Ƴ, σƝ) are ƝŚƤƬ1/2 spaces. 

Proof: Let Ɗ be a ƝƓŚƤ open set in (Ƴ, σƝ). Then by hypothesis φƝ
−1(Ɗ) is a ƝƓŚƤ open set in 

(Ҳ , τƝ) . Since (Ҳ , τƝ)  is ƝŚƤƬ1/2  space, φƝ
−1(Ɗ)  is a ƝŚƤ open set in (Ҳ , τƝ) . Therefore 

spintƝ(φƝ
−1(Ɗ)) = φƝ

−1(Ɗ). Since (Ƴ, σƝ)  is ƝŚƤƬ1/2  space, Ɗ  is a ƝŚƤ open set (Ƴ, σƝ)  and 

Ɗ ⊆ clƝ(intƝ(clƝ(Ɗ))). Now, φƝ
−1(Ɗ)= spintƝ(φƝ

−1(Ɗ)), implies  

φƝ
−1(Ɗ) ⊆ spintƝ(φƝ

−1(clƝ(intƝ(clƝ(Ɗ))))). 

 

3.3 NEUTROSOPHIC GENERALIZED SEMI PRE COMPACT SPACE. 

In this segment, our goal is to furnish a thorough exploration of ƝƓŚƤ compact space within 

Neutrosophic topological spaces, clarifying their theoretical underpinnings and fundamental 

characteristics. 

Definition: 3.3.1: Let (Ҳ , τƝ)  be a ƝTŚ. If a family {〈x, μĢ𝑖
(𝑥), σĢ𝑖

(x), γĢ𝑖
(x)〉: i ∈ J}  of ƝƓŚƤ 

open sets in (Ҳ , τƝ) satisfies the condition ∪ {〈x, μĢ𝑖
(𝑥), σĢ𝑖

(x), γĢ𝑖
(x)〉: i ∈ J} = 1Ɲ, then is  called a 

ƝƓŚƤ open cover of (Ҳ , τƝ). 

Definition: 3.3.2: Let (Ҳ , τƝ)  be a ƝTŚ. A finite subfamily of a ƝƓŚƤ open cover 

{〈x, μĢ𝑖
(𝑥), σĢ𝑖

(x), γĢ𝑖
(x)〉: i ∈ J} of (Ҳ , τƝ), which is also a  ƝƓŚƤ open cover of (Ҳ , τƝ) is called a 

finite subcover of {〈x, μĢ𝑖
(𝑥), σĢ𝑖

(x), γĢ𝑖
(x)〉: i ∈ J}. 

Definition: 3.3.3: A ƝTŚ (Ҳ , τƝ) is called ƝƓŚƤ compact iff every ƝƓŚƤ open cover of (Ҳ , τƝ) 

has a finite subcover. 

Definition: 3.3.4: Let (Ҳ , τƝ)  be a ƝTŚ. A family {〈x, μⱩ𝑖
(𝑥), σⱩ𝑖

(x), γⱩ𝑖
(x)〉: i ∈ J}  of ƝƓŚƤ 

closed sets in (Ҳ , τƝ)  satisfies the finite intersection property (in short  ƝIƤ) iff every finite 

subfamily {〈x, μⱩ𝑖
(𝑥), σⱩ𝑖

(x), γⱩ𝑖
(x)〉: i = 1,2, … , n} , of the family satisfies the condition 

∩𝑖=1
𝑛 {〈x, μⱩ𝑖

(𝑥), σⱩ𝑖
(x), γⱩ𝑖

(x)〉} ≠ 0Ɲ. 

Theorem 3.3.5: A ƝTŚ (Ҳ , τƝ) is ƝƓŚƤ compact iff every family {〈x, μⱩ𝑖
(𝑥), σⱩ𝑖

(x), γⱩ𝑖
(x)〉: i ∈

J} of ƝƓŚƤ closed sets with finite intersection property has a non empty intersection. 

Proof:  Let ƝTŚ (Ҳ , τƝ)  is ƝƓŚƤ-compact. Suppose, {〈x, μⱩ𝑖
(𝑥), σⱩ𝑖

(x), γⱩ𝑖
(x)〉: i ∈ J}  be any 

family of  ƝƓŚƤ-closed sets in (Ҳ , τƝ)  such that ∩ {〈x, μⱩ𝑖
(𝑥), σⱩ𝑖

(x), γⱩ𝑖
(x)〉: i ∈ J}=0Ɲ .  Thus, 

this implies that, {〈x, ⋀μⱩ𝑖
(𝑥), ⋀σⱩ𝑖

(x), ⋁γⱩ𝑖
(x)〉} = 0Ɲ,    {⋀μⱩ𝑖

(𝑥): i ∈ J} = 0, {⋀σⱩ𝑖
(𝑥): i ∈ J} = 0 

and {⋁γⱩ𝑖
(x): i ∈ J} = 1 ,  ⇒  ∪ {〈x, μⱩ𝑖

(𝑥), σⱩ𝑖
(x), γⱩ𝑖

(x)〉: i ∈ J} = 1Ɲ . Thus, 

{〈x, μⱩ𝑖
(𝑥), σⱩ𝑖

(x), γⱩ𝑖
(x)〉: i ∈ J}   is a ƝƓŚƤ open cover of (Ҳ , τƝ) . Since (Ҳ , τƝ)  is ƝƓŚƤ-

compact, so every ƝƓŚƤ-open cover of  (Ҳ , τƝ) has finite subcover. Therefore, (Ҳ , τƝ) has finite 

subcover {〈x, μⱩ𝑖
(𝑥), σⱩ𝑖

(x), γⱩ𝑖
(x)〉: i = 1,2, … , n}.  So ∪𝑖=1

𝑛 {〈x, μⱩ𝑖
(𝑥), σⱩ𝑖

(x), γⱩ𝑖
(x)〉} = 1Ɲ , this 

implies that {〈x, ⋁𝑖=1
𝑛 μⱩ𝑖

(𝑥), ⋁𝑖=1
𝑛 σⱩ𝑖

(x), ⋀𝑖=1
𝑛 γⱩ𝑖

(x)〉: i ∈ J} = 1Ɲ , ⋁𝑖=1
𝑛 {μⱩ𝑖

(𝑥)} = 0 , 

⋁𝑖=1
𝑛 {σⱩ𝑖

(𝑥)} = 0  and ⋀𝑖=1
𝑛 {γⱩ𝑖

(𝑥)} = 1 implies that ∩𝑖=1
𝑛 {〈x, μⱩ𝑖

(𝑥), σⱩ𝑖
(x), γⱩ𝑖

(x)〉} = 0Ɲ , which 

contradicts to our hypothesis. Hence, every family of ƝƓŚƤ closed set with finite intersection 

property has a non empty intersection.  

Conversely, suppose every family of ƝƓŚƤ closed set with finite inersecton property has a non 

empty intersection. Assume that , {〈x, μⱩ𝑖
(𝑥), σⱩ𝑖

(x), γⱩ𝑖
(x)〉: i ∈ J}  is any ƝƓŚƤ open cover of 

(Ҳ , τƝ), then ∪ {〈x, μⱩ𝑖
(𝑥), σⱩ𝑖

(x), γⱩ𝑖
(x)〉: i ∈ J} = 1Ɲ . Therefore {〈x, μⱩ𝑖

(𝑥), σⱩ𝑖
(x), γⱩ𝑖

(x)〉: i ∈ J} 

is a family of ƝƓŚƤ closed sets in (Ҳ , τƝ) such that ∩ {〈x, μⱩ𝑖
(𝑥), σⱩ𝑖

(x), γⱩ𝑖
(x)〉: i ∈ J} = 0Ɲ. By 
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assumption, we can find a finite subfamily, {〈x, μⱩ𝑖
(𝑥), σⱩ𝑖

(x), γⱩ𝑖
(x)〉: i = 1,2, … , n}  such that 

∩𝑖=1
𝑛 {〈x, μⱩ𝑖

(𝑥), σⱩ𝑖
(x), γⱩ𝑖

(x)〉} = 0Ɲ,  which implies, ∪𝑖=1
𝑛 {〈x, μⱩ𝑖

(𝑥), σⱩ𝑖
(x), γⱩ𝑖

(x)〉} = 1Ɲ. Thus 

{〈x, μⱩ𝑖
(𝑥), σⱩ𝑖

(x), γⱩ𝑖
(x)〉: i = 1,2, … , n} = 1Ɲ  is a finite subcover of (Ҳ , τƝ) . Hence (Ҳ , τƝ)  is 

ƝƓŚƤ compact. 

Definition: 3.3.6: Let (Ҳ , τƝ)  be a ƝTŚ and Ą  be a Neutrosophic set in (Ҳ , τƝ) . If a family  

{〈x, μⱩ𝑖
(𝑥), σⱩ𝑖

(x), γⱩ𝑖
(x)〉: i ∈ J}  of ƝƓŚƤ open sets in (Ҳ , τƝ)  satisfies the condition Ą ⊆∪

{〈x, μⱩ𝑖
(𝑥), σⱩ𝑖

(x), γⱩ𝑖
(x)〉: i ∈ J}, then it is called a ƝƓŚƤ open cover of Ą. 

Definition: 3.3.7: Let (Ҳ , τƝ)  be a ƝTŚ. A finite subfamily of a ƝƓŚƤ open cover 

{〈x, μⱩ𝑖
(𝑥), σⱩ𝑖

(x), γⱩ𝑖
(x)〉: i ∈ J} of Ą , which is also a ƝƓŚƤ open cover of Ą  is called a finite 

subcover of {〈x, μⱩ𝑖
(𝑥), σⱩ𝑖

(x), γⱩ𝑖
(x)〉: i ∈ J}. 

Definition: 3.3.8: The Neutrosophic set Ą = 〈x, μĄ, σĄ, γĄ〉  in a ƝTŚ (Ҳ , τƝ)  is called ƝƓŚƤ 

compact iff every  ƝƓŚƤ open cover of Ą has a finite subcover. 

Theorem 3.3.9: Let (Ҳ , τƝ)  be a ƝTŚ. A ƝƓŚƤ closed subset of a ƝƓŚƤ compact space is 

Neutrosophic compact relative to (Ҳ , τƝ). 

Proof:  Let Ą be a ƝƓŚƤ closed subset of (Ҳ , τƝ). Let {〈x, μⱩ𝑖
(𝑥), σⱩ𝑖

(x), γⱩ𝑖
(x)〉: i ∈ J} be ƝƓŚƤ 

open cover of Ą. Then the family {〈x, μⱩ𝑖
(𝑥), σⱩ𝑖

(x), γⱩ𝑖
(x)〉: i ∈ J} ∪ ĄC  is ƝƓŚƤ open cover of 

(Ҳ , τƝ) . Since (Ҳ , τƝ)  is a ƝƓŚƤ compact, there is a finite subfamily 

{〈x, μⱩ𝑖
(𝑥), σⱩ𝑖

(x), γⱩ𝑖
(x)〉: i = 1,2, … , n} of ƝƓŚƤ open cover, which also covers (Ҳ , τƝ).  If this 

cover contains ĄC we discard it. Otherwise leave the subcover as it is . Thus, we obtained a finite 

ƝƓŚƤ open subcover of Ą. So Ą is  ƝƓŚƤ compact relative to (Ҳ , τƝ). 

Theorem 3.3.10: Let (Ҳ , τƝ) be a ƝTŚ. If (Ҳ , τƝ) is ƝƓŚƤ compact space, then it is compact. 

Proof: Suppose, (Ҳ , τƝ) be a ƝƓŚƤ compact. Assume contrary that (Ҳ , τƝ) is not fuzzy compact, 

then there is atleast one fuzzy open cover {〈x, μⱩ𝑖
(𝑥), σⱩ𝑖

(x), γⱩ𝑖
(x)〉: i ∈ J} of (Ҳ , τƝ) not has a finite 

subcover, implies that ∪ {〈x, μⱩ𝑖
(𝑥), σⱩ𝑖

(x), γⱩ𝑖
(x)〉} = 1Ɲ  a open cover of (Ҳ , τƝ) such that 

∪𝑖=1
𝑛 {〈x, μⱩ𝑖

(𝑥), σⱩ𝑖
(x), γⱩ𝑖

(x)〉} = 1Ɲ . Since, every Neutrosophic open set is ƝƓŚƤ open set. 

Therefore a open cover {〈x, μⱩ𝑖
(𝑥), σⱩ𝑖

(x), γⱩ𝑖
(x)〉: i ∈ J} of (Ҳ , τƝ) becomes ƝƓŚƤ open cover of 

(Ҳ , τƝ) such that ∪𝑖=1
𝑛 {〈x, μⱩ𝑖

(𝑥), σⱩ𝑖
(x), γⱩ𝑖

(x)〉} = 1Ɲ, which is a contradiction. Hence, if (Ҳ , τƝ) 

is ƝƓŚƤ compact space, then it is compact. 
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