

ISSN: 0970-2555

Volume : 53, Issue 7, No.3, July : 2024

GENERALIZED SEMI PRE CONTINUOUS MAPPING IN NEUTROSOPHIC TOPOLOGICAL SPACES

Chandramathi N, Department of Mathematics, Government Arts College, Udumalpet-642126, Tamil Nādu, India.E-mail: drmathimaths@gmail.com **Rajeshwaran** N, Research Scholar, Department of Mathematics, Government Arts College, Udumalpet-642126, Tamilnadu, India.

Abstract: In this manuscript, we inaugurate Neutrosophic generalized semi pre continuous mapping, Neutrosophic generalized semi pre irresolute mapping and Neutrosophic generalized semi pre compact space. We investigate its properties. Also, we add some improvisation of neutrosophic generalized semi pre continuous mapping.

Keywords: Neutrosophic generalized semi pre closed sets, Neutrosophic generalized semi pre continuous mapping, Neutrosophic generalized semi pre irresolute mapping, Neutrosophic generalized semi pre compact space.

1. Introduction

In 2014, Salama, Smarandache and Valeri [9] initiate idea of Neutrosophic closed sets and Neutrosophic continuous functions. Salama, Alblowi [11] launch the conceptualization of generalized Neutrosophic set and generalized Neutrosophic topological spaces. Wadel and Smarandache [14] popularized NOS. Ishwarya and Bageerathi [8] introduced the view of NSO sets in Neutrosophic topological spaces. Rajeshwaran N and Chandramathi N [25] introduced the Neutrosophic generalized semi pre closed sets in Neutrosophic topological spaces. This manuscript we establish Neutrosophic generalized semi pre continuous mapping.. We study their concepts of Neutrosophic generalized semi pre continuous mapping.

2. Preliminaries

Definition 2.1: [10] A neutrosophic topology (NT for short) a non-empty set X is a family τ_N of neutrosophic subsets in X satisfying the following axioms

 $(NT1)0_{N}, 1_{N} \in \tau_{N}$

 $(NT2)G_1 \cap G_2 \in \tau_N$

(NT3) \cup G_i \in τ _N, \forall {G_i: i \in J} \subseteq τ _N

Here (X_1, τ_N) is called a neutrosophic topological space (NTS for short).

Definition 2.2: [10] Let A_1 and A_2 be two Neutrosophic Sets (NS for Short) of the form

 $A_1 = \{ \langle X, \mu_{A_1}(X), \sigma_{A_1}(X), \gamma_{A_1}(X) \rangle : x \in X \}, A_2 = \{ \langle X, \mu_{A_2}(X), \sigma_{A_2}(X), \gamma_{A_2}(X) \rangle : x \in X \}.$

(a) $A_1 \subseteq A_2$ if and only if $\mu_{A_1}(X) \le \mu_{A_2}(X)$, $\sigma_{A_1}(X) \le \sigma_{A_2}(X)$ and $\gamma_{A_1}(X) \ge \gamma_{A_2}(X)$ for all $x \in X$ (b) $A_1^{C} = \{ \langle X, \gamma_{A_1}(X), 1 - \sigma_{A_1}(X), \mu_{A_1}(X) \rangle : x \in X \}$

$$(c)A_1 \cap A_2 = \{\langle X, \mu_{A_1}(X) \land \mu_{A_2}(X), \sigma_{A_1}(X) \land \sigma_{A_2}(X), \gamma_{A_1}(X) \lor \gamma_{A_2}(X) \rangle : x \in X \}$$

(c) $A_1 \cap A_2 = \{(X, \mu_{A_1}(X)/\mu_{A_2}(X), \sigma_{A_1}(X) \land \sigma_{A_2}(X), \gamma_{A_1}(X) \lor \gamma_{A_2}(X), \ldots, \alpha_{A_1}(X) \lor A_2 = \{(X, \mu_{A_1}(X) \lor \mu_{A_2}(X), \sigma_{A_1}(X) \lor \sigma_{A_2}(X), \gamma_{A_1}(X) \land \gamma_{A_2}(X)\}: x \in X\}$

We can use the symbol $A_1 = \{(X, \mu_A(X), \sigma_A(X), \gamma_A(X)) : x \in X\}$

The Neutrosophic Sets define by $0_N = \{ \langle X, 0, 0, 1 \rangle : x \in X \}$ and $1_N = \{ \langle X, 1, 1, 0 \rangle : x \in X \}$.

Definition 2.3: [10] Let (X, τ) be an NTS and $A = \langle x, \mu_A, \sigma_A, \gamma_A \rangle$ be an NTS in X. Then the neutrosophic interior and an neutrosophic closure are defined by

 $int(A) = \bigcup \{G/G \text{ is a NOS in } X \text{ and } G \subseteq A\}$

 $cl(A) = \cap \{K/K \text{ is a NCS in } X \text{ and } A \subseteq K\}.$

ISSN: 0970-2555

Volume : 53, Issue 7, No.3, July : 2024

Definition 2.4: [25] Let (X, τ_N) be a neutrosophic topological space. A subset A of (X, τ_N) is called Neutrosophic generalized semi pre closed [NGŚP -closed] set if $\text{spcl}_N(A) \subseteq U$, whenever $A \subseteq U$ and U is Neutrosophic open set.

Complement of Neutrosophic generalized semi pre closed set is called the Neutrosophic generalized semi pre [NGŚP -open] open set.

Definition 2.5:[26] A Neutrosophic topological space (X, τ_N) is said to be NGŚP normal if for any pair of disjoint NGŚP closed sets A and B, there exist disjoint Neutrosophic open sets M and N such that $A \subset U, B \subset V$.

Preposition 2.5: [13] Let (X_1, τ_N) , (X_2, σ_N) be two neutrosophic topological spaces, if

g: $(X_1, \tau_N) \rightarrow (X_2, \sigma_N)$ neutrosophic continuous then it is N- continuous

Definition 2.6: [13] A neutrosophic topological space (X_1, τ_N) is said to be neutrosophic T1/2 if any Neutrosophic closed set in (X_1, τ_N) is neutrosophic closed in (X_1, τ_N)

Definition 2.7: [22] A mapping $g: (X_1, \tau_N) \to (X_2, \sigma_N)$ is defined Neutrosophic semi continuous mapping if $g^{-1}(K)$ is NSOS in (X_1, τ_N) for each NOS K (X_2, σ_N) .

3. Neutrosophic Generalized Semi Pre-Continuous mapping

In this section, we Introduce Neutrosophic generalized semi pre continuous mapping and investigate some of its properties.

Definition 3.1.1: A mapping $\varphi_N : (X, \tau_N) \to (Y, \sigma_N)$ is called Neutrosophic generalized semi pre continuous (NGŚP continuous for short) mapping if $\varphi_N^{-1}(D)$ is NGŚPCŚ in (X, τ_N) for every NCŚ D of (Y, σ_N) .

Example 3.1.2: Let $X = \{a, b, c\}$, $Y = \{u, v, w\}$ and $K_1 = \{x, \langle 0.2, 0.4, 0.5 \rangle, \langle 0.4, 0.5, 0.5 \rangle, \langle 0.2, 0.5, 0.2 \rangle\}, \{y, \langle 0.3, 0.2, 0.3 \rangle, \langle 0.4, 0.5, 0.5 \rangle, \langle 0.4, 0.4, 0.5 \rangle\}$

Then $\tau_N = \{0_N, 1_N, K_1\}$ and $\sigma_N = \{0_N, 1_N, K_2\}$ are NTS on (X, τ_N) and (Y, σ_N) respectively. Define a mapping $\phi_N : (X, \tau_N) \rightarrow (Y, \sigma_N)$ by $\phi_N(a) = u, \phi_N(b) = v, \phi_N(c) = w$. Here the neutrosophic set $K_2^C = \{y, \langle 0.3, 0.8, 0.3 \rangle, \langle 0.5, 0.5, 0.4 \rangle, \langle 0.5, 0.6, 0.4 \rangle\}$ is a neutrosophic closed set in (Y, σ_N) . Then

 $\phi_N^{-1}(K_2^C) = \{x, \langle 0.3, 0.8, 0.3 \rangle, \langle 0.5, 0.5, 0.4 \rangle, \langle 0.5, 0.6, 0.4 \rangle\}$ is NGSPCS in (X, τ_N) . Hence ϕ_N is NGSP continuous mapping.

Theorem 3.1.3: Every Neutrosophic continuous mapping is a NGSP continuous mapping but not conversely.

Proof: Let $\varphi_N : (X, \tau_N) \to (Y, \sigma_N)$ be Neutrosophic continuous mapping. Let D be a NCŚ in (Y, σ_N) . Then $\varphi_N^{-1}(D)$ is an NCŚ in (X, τ_N) . Since every NCŚ is a NGŚPCŚ, $\varphi_N^{-1}(D)$ is a NGŚPCŚ in (X, τ_N) . Hence φ_N is a NGŚP continuous mapping

Example 3.1.4: Let $X = \{a, b\}$, $Y = \{u, v\}$ and and $K_1 = \{x, \langle 0.6, 0.3, 0.2 \rangle, \langle 0.5, 0.2, 0.3 \rangle\}$, $K_2 = \{y, \langle 0.5, 0.4, 0.3 \rangle, \langle 0.4, 0.2, 0.3 \rangle\}$. Then $\tau_N = \{0_N, 1_N, K_1\}$ and $\sigma_N = \{0_N, 1_N, K_2\}$ are NTS on (X, τ_N) and (Y, σ_N) respectively. Define a mapping $\phi_N : (X, \tau_N) \to (Y, \sigma_N)$ by $\phi_N(a) = u, \phi_N(b) = v$. Here the neutrosophic set $K_2^C = \{y, \langle 0.3, 0.6, 0.5 \rangle, \langle 0.3, 0.8, 0.4 \rangle\}$ is a neutrosophic closed set in (Y, σ_N) . Then $\phi_N^{-1}(K_2^C) = \{x, \langle 0.3, 0.6, 0.5 \rangle, \langle 0.3, 0.8, 0.4 \rangle\}$ is NGŚPCŚ in (X, τ_N) . Hence ϕ_N is a NGŚP continuous mapping. But ϕ_N is not neutrosophic continuous mapping since K_2^C is neutrosophic closed set in (Y, σ_N) but $\phi_N^{-1}(K_2^C)$ is not a neutrosophic closed set in (X, τ_N) as $cl_N(\phi_N^{-1}(K_2^C)) = 1_N \neq \phi_N^{-1}(K_2^C)$.

Theorem 3.1.5: Every NG continuous mapping is a NGŚP continuous mapping but not conversely.

 $K_2 =$

ISSN: 0970-2555

Volume : 53, Issue 7, No.3, July : 2024

Proof: Let $\varphi_N : (\chi, \tau_N) \to (Y, \sigma_N)$ be a NG continuous mapping. Let D be a NCŚ in (Y, σ_N) . Then $\varphi_N^{-1}(D)$ is a NGCŚ in (χ, τ_N) . Since every NGCŚ is a NGŚPCŚ, $\varphi_N^{-1}(D)$ is a NGŚPCŚ in (χ, τ_N) . Hence φ_N is a NGŚP continuous mapping.

Example 3.1.6: Let $X = \{a, b\}$, $Y = \{u, v\}$ and

$$\begin{split} &K_1 = \{x, \langle \ 0.4, 0.4, 0.6 \rangle, \langle 0.5, 0.4, 0.5 \rangle\}, \ K_2 = \{y, \langle \ 0.7, 0.6, 0.2 \rangle \langle \ 0.5, 0.6, 0.3 \rangle\}. \ \text{Then} \ \tau_N = \{0_N, 1_N, K_1\} \\ &\text{and} \quad \sigma_N = \{0_N, 1_N, K_2\} \ \text{are} \ NTS \ \text{on} \ (X, \tau_N) \ \text{and} \ (Y, \sigma_N) \ \text{respectively. Define a mapping} \ \phi_N: \\ &(X, \tau_N) \rightarrow (Y, \sigma_N) \quad \text{by} \ \phi_N(a) = u, \phi_N(b) = v \ . \ \text{Here} \ \text{the} \ \text{neutrosophic} \ \text{set} \ \ K_2^C = \\ &\{y, \langle \ 0.2, 0.4, 0.7 \rangle \langle \ 0.3, 0.4, 0.5 \rangle\} \ \text{is} \ a \ \text{neutrosophic} \ \text{closed} \ \text{set} \ \text{in} \ (Y, \sigma_N) \ . \ \text{Then} \ \phi_N^{-1}(K_2^C) = \\ &\{x, \langle \ 0.2, 0.4, 0.7 \rangle \langle \ 0.3, 0.4, 0.5 \rangle\} \ \text{is} \ \text{NGSPCS} \ \text{in} \ (X, \tau_N). \ \text{Hence} \ \phi_N \ \text{is} \ a \ \text{NGSP} \ \text{continuous} \ \text{mapping}. \\ &\text{But} \ \phi_N \ \text{is not} \ \text{neutrosophic} \ \text{generalized continuous} \ \text{mapping} \ \text{since} \ K_2^C \ \text{is neutrosophic} \ \text{closed set} \ \text{in} \ (Y, \sigma_N) \ \text{but} \ \phi_N^{-1}(K_2^C) \ \text{is not} \ a \ \text{NGCS} \ \text{in} \ (X, \tau_N) \ \text{as} \ \text{cl}_N \left(\phi_N^{-1}(K_2^C)\right) = K_1^C. \end{split}$$

Theorem 3.1.7: Every NS continuous mapping is a NGSP continuous mapping but not conversely.

Proof: Let $\varphi_N : (\chi, \tau_N) \to (Y, \sigma_N)$ be a NS continuous mapping. Let D be a NCS in (Y, σ_N) . Then $\varphi_N^{-1}(D)$ is a NSCS in (χ, τ_N) . Since every NSCS is a NGSPCS, $\varphi_N^{-1}(D)$ is a NGSPCS in (χ, τ_N) . Hence φ_N is a NGSP continuous mapping.

Example 3.1.8: Let $X_i = \{a, b, c\}, Y = \{u, v, w\}$ and

 $K_1 = \{x, \langle 0.2, 0.4, 0.6 \rangle, \langle 0.1, 0.7, 0.9 \rangle, \langle 0.3, 0.6, 0.9 \rangle\},\$

 $\varphi_N^{-1}(K_2^C)$ is not a NŚCŚ in (X, τ_N) Since $\operatorname{int}_N\left(\operatorname{cl}_N\left(\varphi_N^{-1}(K_2^C)\right)\right) = 1_N \not\subseteq \varphi_N^{-1}(K_2^C)$.

Theorem 3.1.9: Every NP continuous mapping is a NGŚP continuous mapping but not conversely. **Proof**: Let $\varphi_N : (X, \tau_N) \to (Y, \sigma_N)$ be a NP continuous mapping. Let D be a NCŚ in (Y, σ_N) . Then $\varphi_N^{-1}(D)$ is a NPCŚ in (X, τ_N) . Since every NPCŚ is a NGŚPCŚ, $\varphi_N^{-1}(D)$ is a NGŚPCŚ in (X, τ_N) . Hence φ_N is a NGŚP continuous mapping.

Example: 3.1.10: Let $X = \{a, b\}, Y = \{u, v\}$ and

$$\begin{split} & K_1 = \{x, \langle 0.2, 0.3, 0.8 \rangle, \langle 0.5, 0.3, 0.5 \rangle\}, K_2 = \{y, \langle 0.3, 0.5, 0.6 \rangle, \langle 0.2, 0.4, 0.7 \rangle\}. \text{ Then } \tau_N = \{0_N, 1_N, K_1\} \\ & \text{and } \sigma_N = \{0_N, 1_N, K_2\} \text{ are } NT \text{ on } (X, \tau_N) \text{ and } (Y, \sigma_N) \text{ respectively Define a mapping } \phi_N : \\ & (X, \tau_N) \rightarrow (Y, \sigma_N) \quad \text{by } \phi_N(a) = u, \phi_N(b) = v \text{ . Here the neutrosophic set } K_2^C = \{y, \langle 0.6, 0.5, 0.3 \rangle \langle 0.7, 0.6, 0.2 \rangle\} \text{ is a neutrosophic closed set in } (Y, \sigma_N) \text{ . Then } \phi_N^{-1}(K_2^C) = \\ & \{x, \langle 0.6, 0.5, 0.3 \rangle \langle 0.7, 0.6, 0.2 \rangle\} \text{ is NCS in } (X, \tau_N). \text{Then } \phi_N \text{ is NCSP continuous mapping but not } NP \text{ continuous mapping since } K_2^C \text{ is NCS in } (Y, \sigma_N) \text{ and } \phi_N^{-1}(K_2^C) \text{ is not a } NPCS \text{ in } (X, \tau_N). \end{split}$$

Theorem: 3.1.11: Every NSP continuous mapping is a NGSP continuous mapping but not conversely.

Proof: Let $\varphi_N : (\chi, \tau_N) \to (Y, \sigma_N)$ be a NŚP continuous mapping. Let D be a NCŚ in (Y, σ_N) . Then $\varphi_N^{-1}(D)$ is a NŚPCŚ in (χ, τ_N) . Since every NŚPCŚ is NGŚPCŚ, $\varphi_N^{-1}(D)$ is a NGŚPCŚ in (χ, τ_N) . Hence φ_N is a NGŚP continuous mapping. **Example 3.1.12 :** Let $\chi = \{a, b\}, Y = \{u, v\}$ and

ISSN: 0970-2555

Volume : 53, Issue 7, No.3, July : 2024

$$\begin{split} &K_1 = \{x, \langle 0.4, 0.4, 0.6 \rangle, \langle 0.4, 0.4, 0.3 \rangle\}, \ K_2 = \{y, \langle 0.4, 0.5, 0.6 \rangle, \langle 0.3, 0.4, 0.4 \rangle\}. \ \text{Then} \ \tau_N = \{0_N, 1_N, K_1\} \\ &\text{and} \quad \sigma_N = \{0_N, 1_N, K_2\} \ \text{are} \ \text{NTS} \ \text{on} \ (X, \tau_N) \ \text{and} \ (Y, \sigma_N) \ \text{respectively. Define a mapping} \ \phi_N : \\ &(X, \tau_N) \rightarrow (Y, \sigma_N) \quad \text{by} \quad \phi_N(a) = u, \phi_N(b) = v \ . \ \text{Here} \ \text{the} \ \text{neutrosophic} \ \text{set} \ K_2^C = \\ &\{y, \langle 0.6, 0.5, 0.4 \rangle \langle 0.4, 0.6, 0.3 \rangle\} \ \text{is} \ a \ \text{neutrosophic} \ \text{closed} \ \text{set} \ \text{in} \ (Y, \sigma_N) \ . \ \text{Then} \ \phi_N^{-1}(K_2^C) = \\ &\{x, \langle 0.6, 0.5, 0.4 \rangle \langle 0.4, 0.6, 0.3 \rangle\} \ \text{is} \ \text{NGSPCS} \ \text{in} \ (X, \tau_N). \ \text{Then} \ \phi_N^{-1}(K_2^C) \ \text{is not} \ a \ \text{NSPCS} \ \text{in} \\ &(X, \tau_N). \end{split}$$

Theorem: 3.1.13: Every N α continuous mapping is a NGŚP continuous mapping but not conversely. **Proof**: Let $\phi_N : (X, \tau_N) \to (Y, \sigma_N)$ be a N α continuous mapping. Let D be a NCŚ in (Y, σ_N) . Then $\phi_N^{-1}(D)$ is a N α CŚ in (X, τ_N) . Since every N α CŚ is NGŚPCS, $\phi_N^{-1}(D)$ is a NGŚPCŚ in (X, τ_N) . Hence ϕ_N is a NGŚP continuous mapping.

Example 3.1.14: Let $X = \{a, b\}$, $Y = \{u, v\}$ and

 $K_1 = \{x, (0.2, 0.1, 0.7), (0.4, 0.4, 0.7)\}, K_2 = \{y, (0.9, 0.8, 0.7), (0.2, 0.4, 0.6)\}.$ Then

 $τ_N = \{0_N, 1_N, K_1\}$ and $σ_N = \{0_N, 1_N, K_2\}$ are NTŚ on $(X, τ_N)$ and $(Y, σ_N)$ respectively. Define a mapping $φ_N : (X, τ_N) \to (Y, σ_N)$ by $φ_N(a) = u, φ_N(b) = v$. Here the neutrosophic set $K_2^C = \{y, \langle 0.7, 0.2, 0.9 \rangle \langle 0.6, 0.6, 0.2 \rangle\}$ is a neutrosophic closed set in $(Y, σ_N)$. Then $φ_N^{-1}(K_2^C) = \{x, \langle 0.7, 0.2, 0.9 \rangle \langle 0.6, 0.6, 0.2 \rangle\}$ is NGŚPCŚ in $(X, τ_N)$. Then $φ_N$ is NGŚP continuous mapping, but not Nα continuous mapping. Since K_2^C is NCŚ in $(Y, σ_N)$ but $φ_N^{-1}(K_2^C)$ is not a NαCŚ in $(X, τ_N)$.

Theorem: 3.1.15: Let $\varphi_N : (X, \tau_N) \to (Y, \sigma_N)$ be a mapping where $\varphi_N^{-1}(D)$ is a NRCS in (X, τ_N) for every NCS D in (Y, σ_N) . Then φ_N is a NGSP continuous mapping but not conversely.

Proof: Assume that $\varphi_N : (X, \tau_N) \to (Y, \sigma_N)$ is a mapping. Let A be a NCS in (Y, σ_N) . Then $\varphi_N^{-1}(D)$ is a NRCS in (X, τ_N) , by hypothesis. Since every NRCS is NGSPCS, $\varphi_N^{-1}(D)$ is a NGSPCS in (X, τ_N) . Hence φ_N is a NGSP continuous mapping.

Example 3.1.16: Let $X = \{a, b\}$, $Y = \{u, v\}$ and

 $K_1 = \{x, \langle 0.5, 0.6, 0.5 \rangle, \langle 0.5, 0.4, 0.5 \rangle\}, K_2 = \{y, \langle 0.5, 0.3, 0.5 \rangle, \langle 0.5, 0.7, 0.5 \rangle\}.$ Then

 $\begin{aligned} \tau_{N} &= \{0_{N}, 1_{N}, K_{1}\} \text{ and } \sigma_{N} = \{0_{N}, 1_{N}, K_{2}\} \text{ are } NTS \text{ on } (X, \tau_{N}) \text{ and } (Y, \sigma_{N}) \text{ respectively. Define a} \\ \text{mapping } \phi_{N} &: (X, \tau_{N}) \to (Y, \sigma_{N}) \text{ by } \phi_{N}(a) = u, \phi_{N}(b) = v \text{ . Here the neutrosophic set } K_{2}^{C} = \\ \{y, \langle 0.5, 0.7, 0.5 \rangle \langle 0.5, 0.3, 0.5 \rangle \} \text{ is a neutrosophic closed set in } (Y, \sigma_{N}) \text{ . Then } \phi_{N}^{-1}(K_{2}^{C}) = \\ \{x, \langle 0.5, 0.7, 0.5 \rangle \langle 0.5, 0.3, 0.5 \rangle \} \text{ is } NGSPCS \text{ in } (X, \tau_{N}). \text{ Then } \phi_{N} \text{ is } NGSP \text{ continuous mapping, but } \\ \text{not } NR \text{ continuous mapping. Since } K_{2}^{C} \text{ is } NCS \text{ in } (Y, \sigma_{N}) \text{ but } \phi_{N}^{-1}(K_{2}^{C}) \text{ is not a } NRCS \text{ in } (X, \tau_{N}). \end{aligned}$

Theorem: 3.1.17: Let $\varphi_N: (X_1, \tau_N) \to (X_2, \sigma_N)$ be a NGSP continuous mapping and let $\Psi_N: (X_2, \sigma_N) \to (X_3, \eta_N)$ be a N continuous mapping, then $\varphi_N \circ \Psi_N: (X_1, \tau_N) \to (X_3, \eta_N)$ is a NGSP continuous mapping.

Proof: Let D be a NCŚ in (X_3, η_N) . Then $\Psi_N^{-1}(D)$ is a NCŚ in (X_2, σ_N) , by hypothesis. Since φ_N is a NGŚP continuous mapping, $\varphi_N^{-1}(\Psi_N^{-1}(D))$ is a NGŚPCŚ in (X_1, τ_N) . Hence $\varphi_N \circ \Psi_N$ is a NGŚP continuous mapping.

Theorem: 3.1.18: If $\phi_N : (X, \tau_N) \to (Y, \sigma_N)$ is a NGŚP continuous mapping , then for each $NP_{(\alpha,\beta,\gamma)}$ of (X, τ_N) and each $A \in \sigma_N$ such that $\phi_N(NP_{(\alpha,\beta,\gamma)}) \in A$, there exists a NGŚPOŚ B of (X, τ_N) such that $NP_{(\alpha,\beta,\gamma)} \in B$ and $\phi_N(B) \subseteq A$.

Proof: Let $NP_{(\alpha,\beta,\gamma)}$ be a NP of (X, τ_N) and $A \in \sigma_N$ such that $\varphi_N(NP_{(\alpha,\beta,\gamma)}) \in A$. Put $B = \varphi_N^{-1}(A)$. Then by hypothesis, B is a NGSPOS in (X, τ_N) such that $NP_{(\alpha,\beta,\gamma)} \in B$ and $\varphi_N(B) = \varphi_N(\varphi_N^{-1}(A)) \subseteq A$.

UGC CARE Group-1

ISSN: 0970-2555

Volume : 53, Issue 7, No.3, July : 2024

Theorem: 3.1.19: If $\varphi_N : (X, \tau_N) \to (Y, \sigma_N)$ is a NGŚP continuous mapping, then for each $NP_{(\alpha,\beta,\gamma)}$ of (X, τ_N) and each $A \in \sigma_N$ such that $\varphi_N(NP_{(\alpha,\beta,\gamma)})qA$, there exists a NGŚPOŚ B of (X, τ_N) such that $NP_{(\alpha,\beta,\gamma)}qB$ and $\varphi_N(B) \subseteq A$.

Proof: Let $NP_{(\alpha,\beta,\gamma)}$ be a NP of X and $A \in \sigma_N$ such that $\phi_N(NP_{(\alpha,\beta,\gamma)})qA$. Put $B = \phi_N^{-1}(A)$. Then by hypothesis, B is a NGŚPOŚ in (X, τ_N) such that $NP_{(\alpha,\beta,\gamma)}qB$ and $\phi_N(B) = \phi_N(\phi_N^{-1}(A))) \subseteq A$.

Theorem: 3.1.20: Let $\varphi_N : (X, \tau_N) \to (Y, \sigma_N)$ is a NGSP continuous mapping. Then φ_N is a NSP continuous mapping if (X, τ_N) is a NSPT_{1/2} space.

Proof: Let D be a NCŚ in (Y, σ_N) . Then $\phi_N^{-1}(D)$ is a NGŚPCŚ in (X, τ_N) , by hypothesis. Since (X, τ_N) is a NŚPT_{1/2} space, $\phi_N^{-1}(D)$ is a NŚPCŚ in (X, τ_N) . Hence ϕ_N is a NŚP continuous mapping.

Theorem: 3.1.21: Let $\varphi_N : (X, \tau_N) \to (Y, \sigma_N)$ be a NGŚP continuous mapping and let $\Psi_N : (Y, \sigma_N) \to (Z, \eta_N)$ be a NG continuous mapping where (Y, σ_N) is a NT_{1/2} space. Then $\varphi_{N \ 0} \Psi_N : (X, \tau_N) \to (Z, \eta_N)$ is a NGŚP continuous mapping.

Proof: Let D be a NCŚ in (Z, η_N) . Then $\Psi_N^{-1}(D)$ is a NGCS in (Y, σ_N) , by hypothesis. Since (Y, σ_N) is a NT_{1/2} space, $\Psi_N^{-1}(D)$ is a NCŚ in (Y, σ_N) . Therefore $\varphi_N^{-1}(\Psi_N^{-1}(D))$ is a NGŚPCŚ in (X, τ_N) , by hypothesis. Hence $\varphi_N^{-1}(\Psi_N^{-1}(D))$ is a NGŚPCŚ continuous mapping.

Theorem: 3.1.22: Let $\varphi_N : (X, \tau_N) \to (Y, \sigma_N)$ be a mapping from NT (X, τ_N) to (Y, σ_N) . Then the following conditions are equivalent if (X, τ_N) and (Y, σ_N) are NSPT_{1/2} spaces:

(i) ϕ_N is a NGŚP continuous mapping,

(ii) $\varphi_N^{-1}(B)$ is a NGŚPOŚ in (X, τ_N) for each NOŚ B in (Y, σ_N) .

(iii) For every NP $p_{(\alpha,\beta,\gamma)}$ in (X, τ_N) and for every NOS B in (Y, σ_N) such that $\varphi_N(NP_{p(\alpha,\beta,\gamma)}) \in B$, there exists a NGSPOS A in (X, τ_N) such that $(p_{(\alpha,\beta,\gamma)}) \in A$ and $\varphi_N(A) \subseteq B$.

Proof: (i) \Leftrightarrow (ii) is obvious, since $\varphi_N^{-1}(A^C) = (\varphi_N^{-1}(A))^C$.

(ii) \Rightarrow (iii) Let B be a any NOS in (Y, σ_N) and let $(Np_{(\alpha,\beta,\gamma)}) \in (X, \tau_N)$. Given $\varphi_N(Np_{(\alpha,\beta,\gamma)}) \in B$. By hypothesis $\varphi_N^{-1}(B)$ is a NGSPOS in (X, τ_N) . Take $A = \varphi_N^{-1}(B)$. Now $Np_{(\alpha,\beta,\gamma)} \in \varphi_N^{-1}(\varphi_N(Np_{(\alpha,\beta,\gamma)}))$. Therefore $\varphi_N^{-1}(\varphi_N(Np_{(\alpha,\beta,\gamma)})) \in \varphi_N^{-1}(B) = A$. This implies $(Np_{(\alpha,\beta,\gamma)}) \in A$ and $\varphi_N(A) = \varphi_N(\varphi_N^{-1}(B)) \subseteq B$.

(iii) \Rightarrow (i) Let A be a NCŚ in (Y, σ_N) . Then its complement, say $B = A^C$ is a NOŚ in (Y, σ_N) . Let $Np_{(\alpha,\beta,\gamma)} \in (X, \tau_N)$ and $\varphi_N(Np_{(\alpha,\beta,\gamma)}) \in B$. Then there exists a NGŚPOŚ, say C in (X, τ_N) such that $Np_{(\alpha,\beta,\gamma)} \in C$ and $\varphi_N(C) \subseteq B$. Now $C \subseteq \varphi_N^{-1}(\varphi_N(C)) \subseteq \varphi_N^{-1}(B)$. Thus $Np_{(\alpha,\beta,\gamma)} \in \varphi_N^{-1}(B)$. Therefore $\varphi_N^{-1}(B)$ is a NGŚPOŚ in (X, τ_N) . That is $\varphi_N^{-1}(A^C)$ is a NGŚPOŚ in (X, τ_N) and hence $\varphi_N^{-1}(A)$ is a NGŚPCŚ in (X, τ_N) . Thus φ_N is a NGŚP continuous mapping.

Theorem: 3.1.23: Let $\varphi_N : (X, \tau_N) \to (Y, \sigma_N)$ be a mapping from NT (X, τ_N) to NT (Y, σ_N) . Then the following conditions are equivalent if (X, τ_N) and (Y, σ_N) are NSPT_{1/2} spaces:

(i) ϕ_N is a NGŚP continuous mapping,

(ii) For each NP $p_{(\alpha,\beta,\gamma)}$ in (X, τ_N) and for every Neutrosophic neighborhood (NN for short) A of $\varphi_N(Np_{(\alpha,\beta,\gamma)})$, there exists a NGŚPOŚ B in (X, τ_N) such that $(Np_{(\alpha,\beta,\gamma)}) \in B \subseteq \varphi_N^{-1}(A)$.

(iii) For each NP $p_{(\alpha,\beta,\gamma)}$ in (X, τ_N) and for every NN A of $\varphi_N(Np_{(\alpha,\beta,\gamma)})$, there exists a NGŚPOŚ B in (X, τ_N) such that $(Np_{(\alpha,\beta,\gamma)}) \in B$ and $\varphi_N(B) \subseteq A$.

Proof: (i) \Rightarrow (ii) Let $(Np_{(\alpha,\beta,\gamma)}) \in (X, \tau_N)$ and let A be a NN A of $\varphi_N(Np_{(\alpha,\beta,\gamma)})$. Then there exists a NOS C in (Y, σ_N) such that $\varphi_N(Np_{(\alpha,\beta,\gamma)}) \in C \subseteq A$. Since φ_N is a NGSP continuous mapping,

UGC CARE Group-1

ISSN: 0970-2555

Volume : 53, Issue 7, No.3, July : 2024

 $\varphi_N^{-1}(C) = \mathbb{B}(say)$, is a NGŚPOŚ in (X, τ_N) and $(Np_{(\alpha, \beta, \gamma)}) \in \mathbb{B} \subseteq \varphi_N^{-1}(\mathbb{A})$.

(ii) \Rightarrow (iii) Let $(Np_{(\alpha,\beta,\gamma)}) \in (X, \tau_N)$ and let A be a NN of $\varphi_N(Np_{(\alpha,\beta,\gamma)})$. Then there exists a NGŚPOŚ B in (X, τ_N) such that $(Np_{(\alpha,\beta,\gamma)}) \in B \subseteq \varphi_N^{-1}(A)$, by hypothesis. Therefore $(Np_{(\alpha,\beta,\gamma)}) \in B$ and $\varphi_N(B) \subseteq \varphi_N(\varphi_N^{-1}(A)) \subseteq A$.

(iii) \Rightarrow (i) Let B be a NOŚ in (Y, σ_N) and let $(Np_{(\alpha,\beta,\gamma)}) \in \varphi_N^{-1}(B)$. Then $\varphi_N(Np_{(\alpha,\beta,\gamma)}) \in B$. Therefore B is a NN of $\varphi_N(Np_{(\alpha,\beta,\gamma)})$. Since B is NOŚ, by hypothesis there exists a NGŚPOŚ A in (X, τ_N) such that $(Np_{(\alpha,\beta,\gamma)}) \in A \subseteq \varphi_N^{-1}(\varphi_N(A)) \subseteq \varphi_N^{-1}(B)$. Therefore $\varphi_N^{-1}(B)$ is a NGŚPOŚ in (X, τ_N) . Hence φ_N is a NGŚP continuous mapping.

Theorem: 3.1.24: Let $\varphi_N : (X, \tau_N) \to (Y, \sigma_N)$ be a mapping from NT (X, τ_N) to NT (Y, σ_N) . Then the following conditions are equivalent if (X, τ_N) is a NSPT_{1/2} spaces:

(i) ϕ_N is a NGŚP continuous mapping,

(ii) If B is a NOŚ in (Y, σ_N) then $\phi_N^{-1}(B)$ is a NGŚPOŚ in (X, τ_N) ,

(iii)
$$\varphi_{\mathbb{N}}^{-1}(\operatorname{int}_{\mathbb{N}}(\mathbb{B})) \subseteq \operatorname{cl}_{\mathbb{N}}(\operatorname{int}_{\mathbb{N}}\left(\operatorname{cl}_{\mathbb{N}}\left(\varphi_{\mathbb{N}}^{-1}(\mathbb{B})\right)\right))$$
 for every $\mathbb{N}S \ \mathbb{B}$ in $(Y, \sigma_{\mathbb{N}})$.

Proof: (i) \Leftrightarrow (ii) is obviously true by Theorem 3.1.22

(ii) \Rightarrow (iii) Let B be any NŚ in (Y, σ_N) . Then $int_N(B)$ is a NOŚ in (Y, σ_N) . Then $\varphi_N^{-1}(int_N(B))$ is a NGŚPOŚ in (X, τ_N) . Since (X, τ_N) is a NŚPT_{1/2} space, $\varphi_N^{-1}(int_N(B))$ is a NŚPOŚ in (X, τ_N) . Therefore

$$\varphi_{N}^{-1}(\operatorname{int}_{N}(\mathbb{B})) \subseteq \operatorname{cl}_{N}(\operatorname{int}_{N}\left(\operatorname{cl}_{N}\left(\varphi_{N}^{-1}(\operatorname{int}_{N}(\mathbb{B}))\right)\right)) \subseteq \operatorname{cl}_{N}(\operatorname{int}_{N}\left(\operatorname{cl}_{N}\left(\varphi_{N}^{-1}(\mathbb{B})\right))).$$

(iii) \Rightarrow (i) Let B be a NOŚ in (Y, σ_N) . By hypothesis $\varphi_N^{-1}(B) = \varphi_N^{-1}(int_N(B)) \subseteq cl_N(int_N(cl_N(\varphi_N^{-1}(B))))$. This implies $\varphi_N^{-1}(B)$ is N β OŚ in (X, τ_N) . Therefore it is a NGŚPOŚ in (X, τ_N) , and hence φ_N is a NGŚP continuous mapping, by Theorem 3.1.22

Theorem: 3.1.25: Let $\varphi_N : (X, \tau_N) \to (Y, \sigma_N)$ be a mapping from NT (X, τ_N) to NT (Y, σ_N) . Then the following conditions are equivalent if (X, τ_N) and (X, τ_N) are NSPT_{1/2} spaces:

(i) ϕ_N is a NGŚP continuous mapping,

(ii)
$$\operatorname{int}_{\mathbb{N}}\left(\operatorname{cl}_{\mathbb{N}}(\operatorname{int}_{\mathbb{N}}\left(\varphi_{\mathbb{N}}^{-1}(\mathbb{B})\right)\right) \subseteq \varphi_{\mathbb{N}}^{-1}(\operatorname{spcl}_{\mathbb{N}}(\mathbb{B})) \text{ for each } \mathbb{N}CS \mathbb{B} \text{ in } (Y, \sigma_{\mathbb{N}}),$$

(iii)
$$\varphi_{N}^{-1}(\operatorname{spint}_{N}(\mathbb{B})) \subseteq \operatorname{cl}_{N}(\operatorname{int}_{N}(\operatorname{cl}_{N}(\varphi_{N}^{-1}(\mathbb{B}))))$$
 for each NOS \mathbb{B} of (Y, σ_{N}) ,

(iv) $\varphi_{N}(\operatorname{int}_{N}(\operatorname{cl}_{N}(\operatorname{int}_{N}((A)))) \subseteq \operatorname{cl}_{N}(\varphi_{N}(A))$ for each NS A of (X, τ_{N})

Proof: (i)=(ii) Let B be a NCŚ in (Y, σ_N) . Then $\varphi_N^{-1}(B)$ is a NGŚPCŚ in (X, τ_N) . Since (X, τ_N) is a NŚPT_{1/2} space, $\varphi_N^{-1}(B)$ is a NŚPCŚ. Therefore $\operatorname{int}_N\left(\operatorname{cl}_N(\operatorname{int}_N\left(\varphi_N^{-1}(B)\right)\right) \subseteq \varphi_N^{-1}(B) = \varphi_N^{-1}(\operatorname{spcl}_N(B))$.

 $(ii) \Rightarrow (iii)$ can be easily proved by taking complement in (ii).

 $\begin{array}{ll} (\mathrm{iii}) \Rightarrow (\mathrm{iv}) \ \mathrm{Let} \ \mathsf{A} \in \left(\mathsf{X}, \tau_{\mathsf{N}}\right) & . \ \mathrm{Taking} \ \mathsf{B} = \phi_{\mathsf{N}}(\mathsf{A}) \ \mathrm{we} \ \mathrm{have} \ \mathsf{A} \subseteq \phi_{\mathsf{N}}^{-1}(\mathsf{B}). \ \mathrm{Here} \ \mathrm{int}_{\mathsf{N}}\left(\phi_{\mathsf{N}}(\mathsf{A})\right) = \\ \mathrm{int}_{\mathsf{N}}(\mathsf{B}) \ \mathrm{is} \ \mathrm{a} \ \mathrm{NOS} \ \mathrm{in} \ \left(\mathsf{Y}, \sigma_{\mathsf{N}}\right) & . \ \mathrm{Then} \ (\mathrm{iii}) \ \mathrm{implies} \ \mathrm{that} \ \phi_{\mathsf{N}}^{-1}(\mathrm{spint}_{\mathsf{N}}(\mathrm{int}_{\mathsf{N}}(\mathsf{B})) \subseteq \\ \mathrm{cl}_{\mathsf{N}}(\mathrm{int}_{\mathsf{N}}(\mathrm{cl}_{\mathsf{N}}(\phi_{\mathsf{N}}^{-1}(\mathrm{int}_{\mathsf{N}}\mathsf{B})))) \subseteq \mathrm{cl}_{\mathsf{N}}(\mathrm{int}_{\mathsf{N}}(\mathrm{cl}_{\mathsf{N}}(\phi_{\mathsf{N}}^{-1}(\mathsf{B})))). \ \mathrm{Now} \ \mathrm{we} \ \mathrm{have} \ \mathrm{cl}_{\mathsf{N}}(\mathrm{int}_{\mathsf{N}}(\mathrm{cl}_{\mathsf{N}}(\mathsf{A}^{C})))^{\mathcal{C}} \subseteq \\ \mathrm{cl}_{\mathsf{N}}(\mathrm{int}_{\mathsf{N}}(\mathrm{cl}_{\mathsf{N}}(\phi_{\mathsf{N}}^{-1}(\mathsf{B}^{C})))^{\mathcal{C}} \subseteq \phi_{\mathsf{N}}^{-1}(\mathrm{spint}_{\mathsf{N}}(\mathrm{int}_{\mathsf{N}}(\mathsf{B}^{C})))^{\mathsf{C}} \ \mathrm{This} \ \mathrm{implies} \ \mathrm{int}_{\mathsf{N}}\left(\mathrm{cl}_{\mathsf{N}}(\mathrm{int}_{\mathsf{N}}((\mathsf{A}))\right) \subseteq \\ \phi_{\mathsf{N}}^{-1}(\mathrm{spcl}_{\mathsf{N}}\left(\mathrm{cl}_{\mathsf{N}}(\mathsf{B})\right)) \ \mathrm{Therefore} \ \phi_{\mathsf{N}}\left(\mathrm{int}_{\mathsf{N}}\left(\mathrm{cl}_{\mathsf{N}}(\mathrm{int}_{\mathsf{N}}((\mathsf{A}))\right)\right) \subseteq \\ \phi_{\mathsf{N}}(\mathsf{B}) = \mathrm{cl}_{\mathsf{N}}(\phi_{\mathsf{N}}(\mathsf{A})). \end{array}$

UGC CARE Group-1

Industrial Engineering Journal ISSN: 0970-2555

Volume : 53, Issue 7, No.3, July : 2024

(iv) \Rightarrow (i) Let B be a any NCŚ in (Y, σ_N) . Then $\varphi_N^{-1}(B)$ is a NŚ in (X, τ_N) . By hypothesis $\varphi_N\left(\operatorname{int}_N\left(\operatorname{cl}_N(\operatorname{int}_N\left(\left(\varphi_N^{-1}(B)\right)\right)\right)\right) \subseteq \operatorname{cl}_N(\varphi_N^{-1}(B))) \subseteq \operatorname{cl}_N(B) = B$. Now $\operatorname{int}_N(\operatorname{cl}_N(\operatorname{int}_N(\varphi_N^{-1}(B)))) \subseteq \varphi_N^{-1}(\varphi_N(\operatorname{int}_N(\operatorname{cl}_N(\operatorname{int}_N(\varphi_N^{-1}(B))))) \subseteq \varphi_N^{-1}(B)$. This implies $\varphi_N^{-1}(B)$ is a NBCŚ and hence it is a NGŚPCŚ in (X, τ_N) . Thus φ_N is a NGŚP continuous mapping.

Theorem: 3.1.26: A mapping $\varphi_{N} : (X, \tau_{N}) \to (Y, \sigma_{N})$ is a NGŚP continuous mapping if $cl_{N}(int_{N}(cl_{N}(\varphi_{N}^{-1}(A)))) \subseteq \varphi_{N}^{-1}(cl_{N}(A))$ for every NŚ A in (Y, σ_{N}) .

Proof: Let A be a NOS in (Y, σ_N) . Then A^C is a NCS in (Y, σ_N) . Therefore $cl_N(A^C) = A^C$. By hypothesis,

 $cl_{N}(int_{N}(cl_{N}(\phi_{N}^{-1}(A^{C})))) \subseteq \phi_{N}^{-1}(cl_{N}(A^{C})) = \phi_{N}^{-1}(A^{C}). \text{ Now } (int_{N}(cl_{N}(int_{N}(\phi_{N}^{-1}(A)))))^{C} = cl_{N}(int_{N}(cl_{N}(\phi_{N}^{-1}(A^{C})))) \subseteq \phi_{N}^{-1}(A^{C}) = (\phi_{N}^{-1}(A))^{C} . \text{ This implies } \phi_{N}^{-1}(A) \subseteq int_{N}(cl_{N}(int_{N}(\phi_{N}^{-1}(A)))). \text{ Hence } \phi_{N}^{-1}(A) \text{ is a } N\alpha O'S \text{ in } (X, \tau_{N}) \text{ and hence it is a } NGSPOS' \text{ in } (X, \tau_{N}). \text{ Therefore } \phi_{N} \text{ is a } NGSP' \text{ continuous mapping, by Theorem 3.1.22.}$

Theorem: 3.1.27: Let $\varphi_N : (X, \tau_N) \to (Y, \sigma_N)$ be a mapping from NT (X, τ_N) to NT (Y, σ_N) . Then the following conditions are equivalent if (X, τ_N) is a NSPT_{1/2} spaces:

(i) ϕ_N is a NGŚP continuous mapping,

(ii) $\phi_N^{-1}(B)$ is a NGŚPCŚ in (X, τ_N) for every NCŚ B in (Y, σ_N) ,

(iii) $\operatorname{int}_{N}(\operatorname{cl}_{N}(\operatorname{int}_{N}(\varphi_{N}^{-1}(A)))) \subseteq \varphi_{N}^{-1}(\operatorname{cl}_{N}(A)) \text{ for every NS } A \text{ in } (Y, \sigma_{N}).$

Proof: (i) \Leftrightarrow (ii) is obviously true by Definition 3.1.1

(ii) \Rightarrow (iii) Let A be a NS in (Y, σ_N) . Then $cl_N(A)$ is a NCS in (Y, σ_N) . By hypothesis, $\varphi_N^{-1}(cl_N(A))$ is a NGSPCS in (X, τ_N) . Since (X, τ_N) is a $NSPT_{1/2}$ space, $\varphi_N^{-1}(cl_N(A))$ is a NSPCS in (X, τ_N) . Therefore we have $int_N(cl_N(int_N(\varphi_N^{-1}(cl_N(A))))) \subseteq \varphi_N^{-1}(cl_N(A))$. Now $int_N(cl_N(int_N(\varphi_N^{-1}(cl_N(A))))) \subseteq int_N(cl_N(int_N(\varphi_N^{-1}(cl_N(A))))) \subseteq \varphi_N^{-1}(cl_N(A))$.

(iii) \Rightarrow (i) Let A be a NCŚ in (Y, σ_N) . By hypothesis $\operatorname{int}_N(\operatorname{cl}_N(\operatorname{int}_N(\varphi_N^{-1}(A)))) \subseteq \varphi_N^{-1}(\operatorname{cl}_N(A)) = \varphi_N^{-1}(A)$. This implies $\varphi_N^{-1}(A)$ is a NBCŚ in (X, τ_N) and hence it is a NGŚPCŚ. Thus φ_N is a NGŚP continuous mapping.

3.2 NEUTROSOPHIC GENERALIZED SEMI PRE IRRESOLUTE MAPPING

In this part, we endeavor to offer an extensive view of NGŚP irresolute mappings in Neutrosophic topological spaces, outlining their theoretical bases, fundamental attributes.

Definition 3.2.1: A map $\varphi_N : (X, \tau_N) \to (Y, \sigma_N)$ is called a Neutrosophic generalized semi-pre irresolute (NGŚP irresolute for short) mapping if $\varphi_N^{-1}(D)$ is a NGŚP closed sets in (X, τ_N) for every NGŚP closed set D of (Y, σ_N) .

Example 3.2.2: Let $X = \{a, b\}$, $Y = \{u, v\}$ and

$$\begin{split} &K_1 = \{x, \langle 0.5, 0.6, 0.1 \rangle, \langle 0.5, 0.4, 0.1 \rangle\}, \ &K_2 = \{y, \langle 0.5, 0.3, 0.2 \rangle, \langle 0.5, 0.7, 0.2 \rangle\}. \ \text{Then} \ \tau_N = \{0_N, 1_N, K_1\} \\ &\text{and} \quad \sigma_N = \{0_N, 1_N, K_2\} \ \text{are} \ \text{NTS} \ \text{on} \ (X, \tau_N) \ \text{and} \ (Y, \sigma_N) \ \text{respectively}. \ \text{Define} \ a \ \text{mapping} \ \phi_N : \\ &(X, \tau_N) \rightarrow (Y, \sigma_N) \quad \text{by} \ \phi_N(a) = u, \quad \phi_N(b) = v \ . \ \text{Here} \ \text{the} \ \text{neutrosophic} \ \text{set} \ \ K_3 = \\ &\{y, \langle 0.3, 0.3, 0.7 \rangle, \langle 0.2, 0.3, 0.7 \rangle\} \ \text{is} \ a \ \text{NGSP} \ \text{closed} \ \text{set} \ \text{in} \ (Y, \sigma_N). \ \text{Then} \ \phi_N \ \text{is} \ a \ \text{NGSP} \ \text{irresolute} \\ &\text{mapping} \ \text{since} \ \phi_N^{-1}(K_3) \ \text{is} \ \text{NGSP} \ \text{closed} \ \text{set} \ \text{in} \ (X, \tau_N). \end{split}$$

Theorem: 3.2.3: If $\phi_N : (X, \tau_N) \to (Y, \sigma_N)$ is a NGŚP irresolute mapping then ϕ_N is a NGŚP continuous mapping but not conversely.

ISSN: 0970-2555

Volume : 53, Issue 7, No.3, July : 2024

Proof: Let ϕ_N be a NGŚP irresolute mapping. Let D be any Neutrosophic closed sets in (Y, σ_N) . Then D is a NGŚP closed sets and by hypothesis $\phi_N^{-1}(D)$ is a NGŚP closed sets in (X, τ_N) . Hence ϕ_N is a NGŚP continuous mapping.

Example 3.2.4: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $K_1 = \{x, (0.4, 0.3, 0.6), (0.5, 0.3, 0.5)\}$, $K_2 = \{y, (0.6, 0.7, 0.3), (0.7, 0.8, 0.3)\}$. Then $\tau_N = \{0_N, 1_N, K_1\}$ and $\sigma_N = \{0_N, 1_N, K_2\}$ are NTS on (X, τ_N) and (Y, σ_N) respectively. Define a mapping $\varphi_N : (X, \tau_N) \rightarrow (Y, \sigma_N)$ by $\varphi_N(a) = u$, $\varphi_N(b) = v$. Then φ_N is NGSP continuous mapping since for a neutrosophic closed set $K_2^C = \{y, (0.3, 0.3, 0.6), (0.3, 0.2, 0.7)\}$ in (Y, σ_N) , its inverse image $\varphi_N^{-1}(K_2^C)$ is NGSP closed set in (X, τ_N) . But φ_N is not a NGSP closed set in (Y, σ_N) but $\varphi_N^{-1}(K_3)$ is not a NGSP closed set in (X, τ_N) .

Theorem: 3.2.5: Let $\varphi_{\mathbb{N}} : (X, \tau_{\mathbb{N}}) \to (Y, \sigma_{\mathbb{N}})$ and $\Psi_{\mathbb{N}} : (Y, \sigma_{\mathbb{N}}) \to (Z, \eta_{\mathbb{N}})$ be a NGŚP irresolute mapping. Then $\varphi_{\mathbb{N}} \circ \Psi_{\mathbb{N}} : (X, \tau_{\mathbb{N}}) \to (Z, \eta_{\mathbb{N}})$ is a NGŚP irresolute mapping.

Proof: Let D be a NGŚP closed set in (Z, η_N) . Then $\Psi_N^{-1}(D)$ is a NGŚP closed set in (Y, σ_N) . Since φ_N is a NGŚP irresolute, $\varphi_N^{-1}(\Psi_N^{-1}(D))$ is a NGŚP closed set in (X, τ_N) , by hypothesis. Hence $\varphi_N \circ \Psi_N$ is a NGŚP irresolute mapping.

Theorem: 3.2.6: Let $\varphi_N : (X, \tau_N) \to (Y, \sigma_N)$ be a NGŚP irresolute mapping and $\Psi_N : (Y, \sigma_N) \to (Z, \eta_N)$ be a NGŚP continuous mapping. Then $\Psi_N \circ \varphi_N : (X, \tau_N) \to (Z, \eta_N)$ is a NGŚP continuous mapping.

Proof: Let D be a Neutrosophic closed set in (Z, η_N) . Then $\Psi_N^{-1}(D)$ is a NGŚP closed set in (Y, σ_N) . Since φ_N is a NGŚP irresolute mapping, $\varphi_N^{-1}(\Psi_N^{-1}(D))$ is a NGŚP closed set in (X, τ_N) . Hence $\varphi_N \circ \Psi_N$ is a NGŚP continuous mapping.

Theorem: 3.2.7: Let $\varphi_N : (X, \tau_N) \to (Y, \sigma_N)$ be a mapping from a NT (X, τ_N) into a NT (Y, σ_N) . Then the following conditions are equivalent if (X, τ_N) and (Y, σ_N) are NSPT_{1/2} spaces:

- (i) ϕ_N is a NGŚP irresolute mapping,
- (ii) $\varphi_N^{-1}(D)$ is a NGŚP open set in (X, τ_N) for each NGŚP open set in (Y, σ_N) ,
- (iii) $\varphi_{N}^{-1}(\operatorname{spint}_{N}(\mathbb{D})) \subseteq \operatorname{spint}_{N}(\varphi_{N}^{-1}(\mathbb{D}))$ for each NS \mathbb{D} of (Y, σ_{N}) ,
- (iv) $\operatorname{spcl}_{\mathbb{N}}(\varphi_{\mathbb{N}}^{-1}(\mathbb{D})) \subseteq \varphi_{\mathbb{N}}^{-1}(\operatorname{spcl}_{\mathbb{N}}(\mathbb{D}))$ for each $\mathbb{N}S \ \mathbb{D}$ of $(Y, \sigma_{\mathbb{N}})$.
- **Proof:** (i) \Leftrightarrow (ii) is obvious, since $\varphi_N^{-1}(\mathbb{B}^C) = (\varphi_N^{-1}(\mathbb{B}))^C$.

(ii) \Rightarrow (iii) Let D be any NŚ in (Y, σ_N) and spint_N(D) \subseteq D. Also $\varphi_N^{-1}(\text{spint}_N(D)) \subseteq \varphi_N^{-1}(B)$. Since spint_N(D) is a NŚP open set in (Y, σ_N) , it is a NŚŚP open set in (Y, σ_N) . Therefore $\varphi_N^{-1}(\text{spint}_N(D))$ is a NŚŚP open set in (X, τ_N) , by hypothesis. Since (X, τ_N) is a NŚPT_{1/2} space, $\varphi_N^{-1}(\text{spint}_N(D))$ is a NŚP open set in (X, τ_N) . Hence $\varphi_N^{-1}(\text{spint}_N(D)) = \text{spint}_N(\varphi_N^{-1}(\text{spint}_N(D))) \subseteq \text{spint}_N(\varphi_N^{-1}(D))$

(iii) \Rightarrow (iv) is obvious by taking complement in (iii).

(iv)⇒(i) Let D be a NGŚP closed set in (Y, σ_N) . Since (Y, σ_N) is a NŚPT_{1/2} space, D is a NŚP closed sets in (Y, σ_N) and spcl_N(D) = D. Hence $\varphi_N^{-1}(D) = \varphi_N^{-1}(\text{spcl}_N(D)) \supseteq \text{spcl}_N(\varphi_N^{-1}(D))$, by hypothesis. But $\varphi_N^{-1}(D) \subseteq \text{spcl}_N(\varphi_N^{-1}(D))$. Therefore $\text{spcl}_N(\varphi_N^{-1}(D)) = \varphi_N^{-1}(D)$. This implies $\varphi_N^{-1}(D)$ is a NŚP closed sets and hence it is a NGŚP closed set in (X, τ_N) . Thus φ_N is a NGŚP irresolute mapping.

ISSN: 0970-2555

Volume : 53, Issue 7, No.3, July : 2024

Theorem: 3.2.8: Let $\varphi_N : (X, \tau_N) \to (Y, \sigma_N)$ be a NGŚP irresolute mapping from a NT (X, τ_N) into (Y, σ_N) . Then $\varphi_N^{-1}(D) \subseteq \text{spint}_N(\varphi_N^{-1}(\text{cl}_N(\text{int}_N(\text{cl}_N(D)))))$ for every NGŚP open set D in (Y, σ_N) , if (X, τ_N) and (Y, σ_N) are NŚPT_{1/2} spaces.

Proof: Let D be a NGŚP open set in (Y, σ_N) . Then by hypothesis $\varphi_N^{-1}(D)$ is a NGŚP open set in (X, τ_N) . Since (X, τ_N) is NŚPT_{1/2} space, $\varphi_N^{-1}(D)$ is a NŚP open set in (X, τ_N) . Therefore spint_N($\varphi_N^{-1}(D)$) = $\varphi_N^{-1}(D)$. Since (Y, σ_N) is NŚPT_{1/2} space, D is a NŚP open set (Y, σ_N) and $D \subseteq cl_N(int_N(cl_N(D)))$. Now, $\varphi_N^{-1}(D) = spint_N(\varphi_N^{-1}(D))$, implies

 $\phi_{N}^{-1}(\mathfrak{D}) \subseteq spint_{N}(\phi_{N}^{-1}(cl_{N}(int_{N}(cl_{N}(\mathfrak{D}))))).$

3.3 NEUTROSOPHIC GENERALIZED SEMI PRE COMPACT SPACE.

In this segment, our goal is to furnish a thorough exploration of NGŚP compact space within Neutrosophic topological spaces, clarifying their theoretical underpinnings and fundamental characteristics.

Definition: 3.3.1: Let (X, τ_N) be a NTŚ. If a family $\{\langle x, \mu_{G_i}(x), \sigma_{G_i}(x), \gamma_{G_i}(x) \rangle: i \in J\}$ of NGŚP open sets in (X, τ_N) satisfies the condition $\cup \{\langle x, \mu_{G_i}(x), \sigma_{G_i}(x), \gamma_{G_i}(x) \rangle: i \in J\} = 1_N$, then is called a NGŚP open cover of (X, τ_N) .

Definition: 3.3.2: Let (X, τ_N) be a NTŚ. A finite subfamily of a NGŚP open cover $\{\langle x, \mu_{G_i}(x), \sigma_{G_i}(x), \gamma_{G_i}(x) \rangle: i \in J\}$ of (X, τ_N) , which is also a NGŚP open cover of (X, τ_N) is called a finite subcover of $\{\langle x, \mu_{G_i}(x), \sigma_{G_i}(x), \gamma_{G_i}(x) \rangle: i \in J\}$.

Definition: 3.3.3: A NTŚ (X, τ_N) is called NGŚP compact iff every NGŚP open cover of (X, τ_N) has a finite subcover.

Definition: 3.3.4: Let (X, τ_N) be a NTŚ. A family $\{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle: i \in J\}$ of NGŚP closed sets in (X, τ_N) satisfies the finite intersection property (in short NIP) iff every finite subfamily $\{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle: i = 1, 2, ..., n\}$, of the family satisfies the condition $\bigcap_{i=1}^{n} \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle\} \neq 0_N$.

Theorem 3.3.5: A NTŚ (X, τ_N) is NGŚP compact iff every family { $\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle$: $i \in J$ } of NGŚP closed sets with finite intersection property has a non empty intersection.

Proof: Let NTŚ (X, τ_N) is NGŚP-compact. Suppose, $\{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle : i \in J\}$ be any family of NGŚP-closed sets in (X, τ_N) such that $\cap \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle : i \in J\} = 0_N$. Thus, this implies that, $\{\langle x, \Lambda \mu_{K_i}(x), \Lambda \sigma_{K_i}(x), \vee \gamma_{K_i}(x)\rangle\} = 0_N$, $\{\Lambda \mu_{K_i}(x): i \in J\} = 0, \{\Lambda \sigma_{K_i}(x): i \in J\} = 0$ $\{ \forall \gamma_{K_i}(\mathbf{x}) : \mathbf{i} \in \mathbf{J} \} = 1 \quad ,$ \Rightarrow $\cup \{ \langle \mathbf{x}, \mu_{\mathbf{K}_i}(\mathbf{x}), \sigma_{\mathbf{K}_i}(\mathbf{x}), \gamma_{\mathbf{K}_i}(\mathbf{x}) \rangle : \mathbf{i} \in \mathbf{J} \} = \mathbf{1}_{\mathbf{N}} \quad .$ and Thus, { $\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle$: $i \in J$ } is a NGŚP open cover of (X, τ_N) . Since (X, τ_N) is NGŚPcompact, so every NGŚP-open cover of (X, τ_N) has finite subcover. Therefore, (X, τ_N) has finite subcover $\{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle: i = 1, 2, ..., n\}$. So $\bigcup_{i=1}^n \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle\} = 1_N$, this $\{\langle \mathbf{x}, \bigvee_{i=1}^{n} \mu_{\mathbf{K}_{i}}(\mathbf{x}), \bigvee_{i=1}^{n} \sigma_{\mathbf{K}_{i}}(\mathbf{x}), \bigwedge_{i=1}^{n} \gamma_{\mathbf{K}_{i}}(\mathbf{x}) \rangle : i \in \mathbf{J}\} = \mathbf{1}_{\mathbb{N}} \quad , \quad \bigvee_{i=1}^{n} \{\mu_{\mathbf{K}_{i}}(\mathbf{x})\} = \mathbf{0}$ implies that $\bigvee_{i=1}^{n} \{\sigma_{K_i}(x)\} = 0 \text{ and } \bigwedge_{i=1}^{n} \{\gamma_{K_i}(x)\} = 1 \text{ implies that } \bigcap_{i=1}^{n} \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \sigma_{K_i}(x) \rangle\} = 0_N, \text{ which } \{\langle x, \mu_{K_i}(x), \sigma_{K_i}$ contradicts to our hypothesis. Hence, every family of NGSP closed set with finite intersection property has a non empty intersection.

Conversely, suppose every family of NGŚP closed set with finite inersecton property has a non empty intersection. Assume that , { $\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle$: $i \in J$ } is any NGŚP open cover of (X, τ_N) , then $\cup \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle$: $i \in J$ } = 1_N. Therefore { $\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle$: $i \in J$ } is a family of NGŚP closed sets in (X, τ_N) such that $\cap \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle$: $i \in J$ } = 0_N. By

ISSN: 0970-2555

Volume : 53, Issue 7, No.3, July : 2024

assumption, we can find a finite subfamily, $\{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle: i = 1, 2, ..., n\}$ such that $\bigcap_{i=1}^{n} \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle\} = 0_N$, which implies, $\bigcup_{i=1}^{n} \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle\} = 1_N$. Thus $\{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle: i = 1, 2, ..., n\} = 1_N$ is a finite subcover of (X, τ_N) . Hence (X, τ_N) is NGŚP compact.

Definition: 3.3.6: Let (X, τ_N) be a NTŚ and A be a Neutrosophic set in (X, τ_N) . If a family $\{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle: i \in J\}$ of NGŚP open sets in (X, τ_N) satisfies the condition $A \subseteq \bigcup$ $\{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle: i \in J\}$, then it is called a NGŚP open cover of A.

Definition: 3.3.7: Let (X, τ_N) be a NTŚ. A finite subfamily of a NGŚP open cover $\{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle: i \in J\}$ of A, which is also a NGŚP open cover of A is called a finite subcover of $\{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle: i \in J\}$.

Definition: 3.3.8: The Neutrosophic set $A = \langle x, \mu_A, \sigma_A, \gamma_A \rangle$ in a NTS (X, τ_N) is called NGSP compact iff every NGSP open cover of A has a finite subcover.

Theorem 3.3.9: Let (X, τ_N) be a NTS. A NGSP closed subset of a NGSP compact space is Neutrosophic compact relative to (X, τ_N) .

Proof: Let A be a NGŚP closed subset of (X, τ_N) . Let $\{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle: i \in J\}$ be NGŚP open cover of A. Then the family $\{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle: i \in J\} \cup A^C$ is NGŚP open cover of (X, τ_N) . Since (X, τ_N) is a NGŚP compact, there is a finite subfamily $\{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle: i = 1, 2, ..., n\}$ of NGŚP open cover, which also covers (X, τ_N) . If this cover contains A^C we discard it. Otherwise leave the subcover as it is . Thus, we obtained a finite NGŚP open subcover of A. So A is NGŚP compact relative to (X, τ_N) .

Theorem 3.3.10: Let (X, τ_N) be a NTŚ. If (X, τ_N) is NGŚP compact space, then it is compact.

Proof: Suppose, (X, τ_N) be a NGŚP compact. Assume contrary that (X, τ_N) is not fuzzy compact, then there is atleast one fuzzy open cover { $\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle$: $i \in J$ } of (X, τ_N) not has a finite subcover, implies that $\cup \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle\} = 1_N$ a open cover of (X, τ_N) such that $\bigcup_{i=1}^n \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x), \gamma_{K_i}(x), \gamma_{K_i}(x) \rangle\} = 1_N$. Since, every Neutrosophic open set is NGŚP open set. Therefore a open cover { $\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x) \rangle$: $i \in J$ } of (X, τ_N) becomes NGŚP open cover of (X, τ_N) such that $\bigcup_{i=1}^n \{\langle x, \mu_{K_i}(x), \sigma_{K_i}(x), \gamma_{K_i}(x), \gamma_{K_i}(x) \rangle\} = 1_N$, which is a contradiction. Hence, if (X, τ_N) is NGŚP compact space, then it is compact.

REFERENCE

[1] Atanassov.K. T, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986), 87-96.

[2] Chang.C. L, Fuzzy topological spaces, Journal of Mathematical Analysis and Application, 24(1968), 183–190.

[3] Dhavaseelan.R and Jafari, Generalized Neutrosophic closed sets, new trends in Neutrosophic theory and applications, 2(2018), 261–273.

[4] Dogan Coker, An introduction to intuitionstic fuzzy topological spaces, Fuzzy Sets and Systems, 88(1997), 81–89.

[5] Floretin Smarandache, Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA, 2002.

[6] Floretin Smarandache, Neutrosophic Set:- A Generalization of Intuitionistiic Fuzzy set, Journal of Defense Resourses Management, 1(2010),107–116.

[7] Floretin Smarandache, A Unifying Field in Logic: Neutrosophic Logic. Neutrosophy, Neutrosophic set, Neutrosophic Probability. Ameican Research Press, Rehoboth, NM,1999.

ISSN: 0970-2555

Volume : 53, Issue 7, No.3, July : 2024

[8] Ishwarya.P and K. Bageerathi, On Neutrosophic semi-open sets in Neutrosophic topological spaces, International Jour. of Math. Trends and Tech. 2016, 214-223.

[9] Salama A.A and, Florentin Smarandache and Valeri Kroumov, Neutrosophic closed sets abs Neutrosophic continuous Function, Neutrosophic Sets and System, 2014,4, 4-8.

[10] Salama A.A and Alblowi S.A, Neutrosophic set and Neutrosophic topological space, ISOR J. Mathematics, 3(4)(2012), 31–35.

[11] Salama.A.A and Alblowi.S.A, Generalized Neutrosophic Set and Generalized Neutrosophic Topological Spaces, Journal computer Sci. Engineering, 2(7)(2012), 12–23.

[12] Shanthi.V.K, Chandrasekar.S and Safina Begam.K, Neutrosophic Generalized Semi Closed sets in Neutrosophic Topological spaces, International Journal of Research in Advent Technology, 6(7)(2018), 2321–9637.

[13] SalamaA.A, Florentin Smarandache and Valeri Kroumov, Neutrosophic Closed set and Neutrosophic Continuous Function, Neutrosophic Sets and Systems,4(2014), 4–8.

[14] Wadel Faris Al-omeri and Florentin Smarandache, New Neutrosophic Sets via Neutrosophic Topological Spaces, New Trends in Neutrosophic Theory and Applications, Vol(2) June 2016.

[15] Zadeh.L.A, Fuzzy set, Inform and Control, 8(1965), 338–353.

[16] Al-Omeri, W.F., and Jafari, S., Neutrosophic pre-continuous multifunctions and almost precontinuous multifunctions, Neutrosophic Sets and Systems, Vol 27, pp 53-69, 2019.

[17] Vadivel, M. Seenivasan and C. John Sundar, An introduction to δ -open sets in a neutrosophic topological spaces, Journal of Physics: Conference Series, 1724 (2021), 012011.

[18] A. Vadivel and C. John Sundar, Neutrosophic δ -Open Maps and Neutrosophic δ -Closed Maps, International Journal of Neutrosophic Science (IJNS), 13 (2) (2021), 66-74.

[19] A. Vadivel, P. Thangaraja and C. John Sundar, Neutrosophic e-continuous maps and neutrosophic e-irresolute maps, Turkish Journal of Computer and Mathematics Education,12 (1S) (2021), 369-375.

[20] A. Vadivel, P. Thangaraja and C. John Sundar, Neutrosophic e-Open Maps, Neutrosophic e-Closed Maps and Neutrosophic e-Homeomorphisms in Neutrosophic Topological Spaces, AIP Conference Proceedings, 2364 (2021), 020016.

[21] N. Moogambigai, A. Vadivel, and S. Tamilselvan, Neutrosophic Z-continuous maps a and Z-irresolute maps, AIP Conference Proceedings, 2364 (2021), 020020.

[22] Bhimraj Basumatary, Nijwm Wary,Jeevan Krishna Khaklary and Usha Rani Basumatary, On Some Properties of Neutrosophic Semi Continuous and Almost Continuous Mapping,Computer Modeling in Engineering & Sciences, cmes.2022.018066

[23] Gautam Chandra Ray and Sudeep Dey, Relation of Quasi-coincidence for Neutrosophic Sets, Neutrosophic Sets and Systems, Vol. 46, 2022

[24]Charanya,Dr.K.Ramasamy, Pre semi Homeomorphisms and Generalized semi pre Homeomorphisms in Topological spaces,_International Journal of Mathematics Trends and Technology (IJMTT) – Volume 42 Number 1- February 2017.

[25] Rajeshwaran N and Chandramathi N , , Government Arts College, Udumalpet, India GENERALIZED SEMI PRE CLOSED SETS VIA NEUTROSOPHIC TOPOLOGICAL SPACE, pages 174-180, <u>https://doi.org/10.37896/sr8.12/016</u>

[26] Rajeshwaran N and Chandramathi N, Government Arts College, Udumalpet, India, Neutosophic generalized semi pre regular and normal space, International Journal of Scientific Research in Engineering and Management (IJSREM) on Volume 08, Issue 07 July 2024.