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1. Introduction

In 2014, Salama, Smarandache and Valeri [9] initiate idea of Neutrosophic closed sets and
Neutrosophic continuous functions. Salama, Alblowi [11] launch the conceptualization of
generalized Neutrosophic set and generalized Neutrosophic topological spaces. Wadel and
Smarandache [14] popularized NOS. Ishwarya and Bageerathi [8] introduced the view of NSO sets
in Neutrosophic topological spaces. Rajeshwaran N and Chandramathi N [25] introduced the
Neutrosophic generalized semi pre closed sets in Neutrosophic topological spaces. This manuscript
we establish Neutrosophic generalized semi pre continuous mapping.. We study their concepts of
Neutrosophic generalized semi pre continuous mapping.

2. Preliminaries

Definition 2.1: [10] A neutrosophic topology (NT for short) a non-empty set X is a family t~ of
neutrosophic subsets in X satisfying the following axioms

(NTl )ON! 1N S N

(NT2)G; NG, € Ty

(NT3)UG; € ty,Y{G:i €]} S Ty

Here (X;,ty) s called a neutrosophic topological space (NTS for short).

Definition 2.2: [10] Let A;and A, be two Neutrosophic Sets (NS for Short) of the form

A1 = {{X 1a, (X), 04, (X), va,(X)): x€X}, Ay = {{X, 1a, (X), 04, (X), VA, (X)): x€X} .

(@) Ay S Ay ifandonly if py (X) < pu, (X),04,(X) < 04,(X) and vy, (X) = v4,(X) forall x € X

(0) As© = {{X,va,(X), 1 — 04, (X), 1, (X)): x€X}

(VA1 N Az = {{X, ta, (AW, (X), 04, (X) A 6, (X), Ya, (X)Va, (X)): xeX}

(d) As U Az = {(X, 1ta, OV, (X), 04, (X) V 6, (X), Va, ()AVa, (X)): x€X}

We can use the symbol A; = {(X, pa(X), 04 (X), ya(X)): xeX}

The Neutrosophic Sets define by 0y = {(X,0,0,1) : x € X} and 1y = {(X,1,1,0) : x € X}.

Definition 2.3: [10] Let (X,t) be an NTS and A = (x, li4,04,Y4) be an NTS in X. Then the
neutrosophic interior and an neutrosophic closure are defined by

int(A) =U {G/GisaNOSinXand G € A}

cl(A) =n {K/Kisa NCSin Xand A € K}.
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Definition 2.4: [25] Let (X,,rN) be a neutrosophic topological space. A subset A of (X,TN) IS
called Neutrosophic generalized semi pre closed [NGSP -closed] set if spcly () €U, whenever
A € U and U is Neutrosophic open set.

Complement of Neutrosophic generalized semi pre closed set is called the Neutrosophic generalized
semi pre [NGSP -open] open set.

Definition 2.5:[26] A Neutrosophic topological space (X, ty) is said to be NGSP normal if for any
pair of disjoint NGSP closed sets A and B, there exist disjoint Neutrosophic open sets M and N such
that A c UBc V.

Preposition 2.5: [13] Let (X; , Ty) , (X5, o) be two neutrosophic topological spaces, if

g: (X;,ty) — (X5, 0n) neutrosophic continuous then it is N- continuous

Definition 2.6: [13] A neutrosophic topological space (X;,ty) is said to be neutrosophic T1/2 if
any Neutrosophic closed set in (X, ,ty) is neutrosophic closed in (X, ,Ty)

Definition 2.7: [22] A mapping g: (X1 ,ty) — (X3, 0y) is defined Neutrosophic semi continuous
mapping if g * (K) is NSOS in (X, ,ty) for each NOS K (X,, oy).

3. Neutrosophic Generalized Semi Pre-Continuous mapping

In this section, we Introduce Neutrosophic generalized semi pre continuous mapping and
investigate some of its properties.
Definition 3.1.1: A mapping @y : (X,ty) — (Y, 0y) is called Neutrosophic generalized semi pre
continuous (NGSP continuous for short) mapping if @n (D) is NGSPCSin (X,ty) for every
NCS D of (Y, o).
Example 3.1.2: LetX = {a,b,c}, Y = {u,v,w}and
K; = {x,(0.2,0.4,0.5),(0.4,0.5,0.5),(0.2,0.5,0.2)}, K, =
{y,(0.3,0.2,0.3),(0.4,0.5,0.5),(0.4,0.4,0.5)}
Then Ty = {Oy, 1y, K;} and oy = {Oy, 1y, K2} are NTS on (X, ty) and (Y, o) respectively.
Define a mapping @y : (X,Ty) = (Y,on) by ¢n(@) =u, @n(b) =v,@n(c) =w. Here the
neutrosophic set KS = {y,( 0.3,0.8,0.3),(0.5,0.5,0.4), (0.5,0.6,0.4)} is a neutrosophic closed set in
(Y,op). Then
on 1K) = {x,(0.3,0.8,0.3),(0.5,0.5,0.4),(0.5,0.6,0.4)} is NGSPCS in (X,ty) . Hence @y is
NGSP continuous mapping.
Theorem 3.1.3: Every Neutrosophic continuous mapping is a NGSP continuous mapping but not
conversely.
Proof: Let ¢y : (X, ty) — (Y,on) be Neutrosophic continuous mapping. Let D be a NCS in
(Y,on). Then @yx~*(D) is an NCS in (X, ty). Since every NCS is a NGSPCS, oy~ *(D) is a
NGSPCS in (X, Ty). Hence @y is a NGSP continuous mapping
Example 3.1.4: LetX ={a,b}, Y ={uv}and and K; = {x,(0.6,0.3,0.2),(0.5,0.2,0.3)}, K, =
{y,(0.5,0.4,0.3),(0.4,0.2,0.3)}. Then Tty = {Oy, 1y,K;} and oy = {Oy, 1y, K} are NTS on (X, ty)
and (Y, oy) respectively. Define a mapping ¢y : (X,ty) = (Y,on) by ¢n(@) =u,@n(b) =v.
Here the neutrosophic set KS = {y,{0.3,0.6,0.5),(0.3,0.8,0.4)} is a neutrosophic closed set in
(Y,on). Then @y~ (KS) = {x,(0.3,0.6,0.5),(0.3,0.8,0.4)} is NGSPCS in (X, Ty). Hence @y is a
NGSP continuous mapping. But @y is not neutrosophic continuous mapping since KS is
neutrosophic closed set in (Y,oy) but @y (K$) is not a neutrosophic closed set in (X,ty) as

ey (o1 (KS)) = Ty # @y (KS).
Theorem 3.1.5: Every NG continuous mapping is a NGSP continuous mapping but not conversely.
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Proof: Let gy : (X,ty) — (Y, 0p) be a NG continuous mapping. Let D be a NCS in (Y, o). Then
@on 1(D) is @ NGCS in (X,ty). Since every NGCS is a NGSPCS, @x~*(D) is a NGSPCS in
(X, Tn)- Hence @y is a NGSP continuous mapping.

Example 3.1.6: Let X = {a,b}, Y = {u,v} and

Ky = {%(0.4,0.4,0.6),(0.5,0.4,0.5)}, K, = {,(0.7,0.6,0.2)( 0.5,0.6,0.3)}. Then ty = {Oy, 1y, K4}
and oy = {Oy, 1y, K} are NTS on (X,ty) and (Y,oy) respectively. Define a mapping ¢y :
(X,tn) = (Y, 0p) by ¢n(@ =u@y(b)=v . Here the neutrosophic set K§ =
{y,(0.2,0.4,0.7)¢ 0.3,0.4,0.5)} is a neutrosophic closed set in (Y,oy) . Then @y 1(K$) =
{x,(0.2,0.4,0.7)( 0.3,0.4,0.5)} is NGSPCS in (X, ty). Hence ¢y is a NGSP continuous mapping.
But ¢y is not neutrosophic generalized continuous mapping since KS is neutrosophic closed set in

(Y, op) but @y ™1 (KS) is nota NGCS in (X, ty) as cly ((pN‘l(K,g)) = K¢.

Theorem 3.1.7: Every NS continuous mapping is a NGSP continuous mapping but not conversely.
Proof: Let @y : (X, Ty) — (Y, 0x) be a NS continuous mapping. Let D be a NCS in (Y, oy). Then
@n~1(D) is a NSCS in (X,ty) . Since every NSCS is a NGSPCS, @x~*(D) is a NGSPCS
in(X,ty) . Hence @y is a NGSP continuous mapping.

Example 3.1.8: LetX = {a,b,c},Y = {u,v,w} and

K; = {x,(0.2,0.4,0.6),(0.1,0.7,0.9),(0.3,0.6,0.9)},

K, = {y,(0.1,0.2,0.1),(0.4,0.7,0.6),(0.3,0.7,0.9)}. Then 1y = {Oy, 1y, Ky} and oy = {Oy, 1y, K;}
are NTS on (X,ty) and (Y,oy) respectively. Define a mapping @y : (X,ty) = (Y,0n) by
on(@) =u,@n() =v,ox(c) =w . Here the neutrosophic set K§ =
{y,(0.1,0.8,0.1)( 0.6,0.3,0.4)(0.9,0.3,0.3)} is a neutrosophic closed set in (Y,oy) . Then
on H(KS) = {x,(0.1,0.8,0.1)( 0.6,0.3,0.4)(0.9,0.3,0.3)} is NGSPCS in (X,Ty). Hence @y is a
NGSP continuous mapping. But @y Is not neutrosophic generalized continuous mapping Then @y is
NGSP continuous mapping but not a NS continuous mapping. Since KS is a NCS in (Y,GN) and

@n 1(KS ) isnotaNSCS in (X, ty) Since inty (clN (cpN‘l(K,g ))) =1y € on ' (KS).

Theorem 3.1.9: Every N'P continuous mapping is a NGSP continuous mapping but not conversely.
Proof: Let gy : (X,ty) — (Y, 0p) be a NP continuous mapping. Let D be a NCS in (Y, oy). Then
@on H(D) is @ NPCS in(X,ty). Since every NPCS is a NGSPCS, @y (D) is a NGSPCS in
(X, tn). Hence @y is a NGSP continuous mapping.

Example: 3.1.10: Let X = {a,b},Y = {u, v} and

K; = {x,( 0.2,0.3,0.8),(0.5,0.3,0.5)}, K, = {y,(0.3,0.5,0.6),(0.2,0.4,0.7)}. Then ™N = {ON, 1y, K}
and oy = {Oy, 1y, K,} are NT on (X,ty) and (Y,oy) respectively Define a mapping ¢y :
(X,tn) = (Y, 0p) by @n@ =u@n()=v . Here the neutrosophic set K§ =
{y,(0.6,0.5,0.3)(0.7,0.6,0.2)} is a neutrosophic closed set in (Y,oy) . Then @y (K%)=
{x,{0.6,0.5,0.3)( 0.7,0.6,0.2)} is NGSPCS in (X, ty).Then ¢y is NGSP continuous mapping but not
NP continuous mapping since K5 is NCS in (Y, o) and @x~1(KS ) isnota NPCS in (X, ty) -
Theorem: 3.1.11: Every NSP continuous mapping is a NGSP continuous mapping but not
conversely.

Proof: Let gy : (X, ty) — (Y, 0y) be a NSP continuous mapping. Let D be a NCS in (Y, oy ). Then
@n~1(D) is a NSPCS in (X, ty) . Since every NSPCS is NGSPCS, oy *(D) is a NGSPCS in
(X, ty) . Hence @y is a NGSP continuous mapping.

Example 3.1.12 : Let X = {a,b},Y = {u,v} and
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Ky = {x,( 0.4,0.4,0.6),(0.4,0.4,0.3)}, K, = {y,( 0.4,0.5,0.6),(0.3,0.4,0.4)}. Then Ty = {Oy, 1y, Ky}
and oy = {Oy, 1y, K} are NTS on (X, ty) and (Y,oy) respectively. Define a mapping ¢y :
(x,tn) = (Y,0p) by on(@ =u,@x(b) =v . Here the neutrosophic set K§ =
{y,(0.6,0.5,0.4)( 0.4,0.6,0.3)} is a neutrosophic closed set in (Y,oy) . Then @y 1(K$) =
{x,{0.6,0.5,0.4)( 0.4,0.6,0.3)} is NGSPCS in (X, ty). Then ¢y is NGSP continuous mapping, but
not NSP continuous mapping. Since K5 is NCS in (Y,oy) and @y 1(KS) is not a NSPCS in
(X, ).
Theorem: 3.1.13: Every Na continuous mapping is a NGSP continuous mapping but not conversely.
Proof: Let @y : (X, Ty) — (Y,0x) be a Na continuous mapping. Let D be a NCS in (Y, oy). Then
on (D) is a NaCS in (X,ty). Since every NaC$ is NGSPCS, @x~*(D) is a NGSPCS in
(X, ty).Hence @y is a NGSP continuous mapping.

Example 3.1.14: Let X = {a,b}, Y = {u,v} and

K, = {x,(0.2,0.1,0.7),(0.4,0.4,0.7)}, K, = {y,( 0.9,0.8,0.7),(0.2,0.4,0.6)}. Then
Ty = {On, 1y, Kq} and oy = {0y, 1y, K} are NTS on (X, ty) and (Y, oy) respectively. Define a
mapping ¢y : (X,Tn) = (Y,on) by @n(@) =u,@n(b) =v . Here the neutrosophic set K5 =
{y,(0.7,0.2,0.9) 0.6,0.6,0.2)} is a neutrosophic closed set in (Y,oy) . Then @y '(K$) =
{x,(0.7,0.2,0.9)( 0.6,0.6,0.2)} is NGSPCS in (X, Ty). Then ¢y is NGSP continuous mapping, but
not Na continuous mapping. Since K§ is NCS in (Y, oy) but @y 1(K$) is nota NaCS in (X, ty).
Theorem: 3.1.15: Let ¢y : (X,tn) — (Y,0x) be a mapping where @y~*(D) is a NRCS in
(X, ty) forevery NCS D in (Y, o). Then @y is a NGSP continuous mapping but not conversely.
Proof: Assume that ¢y : (X,ty) — (Y,on) is @ mapping. Let A be a NCS in (Y,oy). Then
@n 1(D) is a NRCS in (X,ty), by hypothesis. Since every NRCS is NGSPCS, ¢y 1(D) is a
NGSPCS in (X, Ty). Hence @y is a NGSP continuous mapping.
Example 3.1.16: Let X = {a,b}, Y = {u, v} and

K, = {x,( 0.5,0.6,0.5),(0.5,0.4,0.5)}, K, = {y,(0.5,0.3,0.5),(0.5,0.7,0.5)}. Then
Ty = {On, 1y, Ky} and oy = {0y, 1y, K} are NTS on (X, ty) and (Y, oy) respectively. Define a
mapping @y : (X,Tx) = (Y,on) by @n(a) =u,@y(b) = v. Here the neutrosophic set K§ =
{y,(0.5,0.7,0.5)( 0.5,0.3,0.5)} is a neutrosophic closed set in (Y, GN) . Then cpN‘l(Kg) =
{x,(0.5,0.7,0.5)( 0.5,0.3,0.5)} is NGSPCS in (X, Ty). Then ¢y is NGSP continuous mapping, but
not NR continuous mapping. Since K§ is NCS in (Y, oy) but @y 1(K$) is nota NRCS in (X, ty).
Theorem: 3.1.17: Let @y:(X;,ty) = (X2, 0n) be a NGSP continuous mapping and let Wy :
(X2,0n) — (X3 ny) be a N continuous mapping, then @y o Wn: (X1, tn) = (X3, ny) is @ NGSP
continuous mapping.
Proof: Let D be a NCS in (X3, nn). Then Wy~ (D) is a NCS in (X,, o), by hypothesis. Since ¢y is
a NGSP continuous mapping, (pN_l(‘PN_l('D)) is a NGSPCS in(X;,ty). Hence gy o Py is a
NGSP continuous mapping.
Theorem: 3.1.18: If @y : (X, ty) = (Y,0y) is @ NGSP continuous mapping , then for each
NPpy) Of (X,Ty) and each A € oy such that @N(NPpy)) € A, there exists a NGSPOS B of
(X, ty) such that NP4 € B and @y(B) € A.
Proof: Let NP,y be a NP of (X, ty) and A € oy such that n(NPepy)) € A. Put B = @y 1(A).
Then by hypothesis, B is a NGSPOS in (X,ty) such that NPip,) €B and @y(B) =

on(en T(A)) € A.
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Theorem: 3.1.19: If @y : (X,ty) = (Y,0y) is @ NGSP continuous mapping, then for each
NPpy) Of (X,ty) and each A € oy such that @x(NPpy))dA, there exists a NGSPOS B of
(X, ) such that NP4 g.,,9B and @y (B) S A.

Proof: Let NPy, be a NP of X and A € oy such that @y(NP(qpy))qA. Put B = @x~'(4). Then
by hypothesis, B is a NGSPOS in (X, ty) such that NP g,,qB and @y (B) = @n(@n " (A)) € A.
Theorem: 3.1.20: Let @y : (X, Ty) — (Y, 0x) is @ NGSP continuous mapping. Then @y is a NSP
continuous mapping if (X, ty) is a NSPT, /, space.

Proof: Let D be a NCS in (Y, ox). Then @y 1(D) is @ NGSPCS in (X, ty), by hypothesis. Since
(X,ty) is a NSPT,, space, oy (D) is @ NSPCS in (X, Ty). Hence ¢y is a NSP continuous
mapping.

Theorem: 3.1.21: Let ¢y: (X,ty) = (Y,on) be @ NGSP continuous mapping and let
Wy:(Y,on) - (Zny) be a NG continuous mapping where (Y,oy) is a NT,,, space. Then
on oWy : (X, ty) — (Zny) is aNGSP continuous mapping.

Proof: Let D be a NCS in (Z,ny). Then Wy~'(D) is a NGCS in (Y, oy), by hypothesis. Since
(Y,op) is aNT, /, space, Wy~ (D) is a NCS in (Y, oy ). Therefore cpN‘l(‘PN_l('D)) is a NGSPCS in
(X, Tn), by hypothesis. Hence ¢y o Wy is a NGSP continuous mapping.

Theorem: 3.1.22: Let @y : (X, Ty) — (Y, 0x) be a mapping from NT (X, ty) to (Y, oy). Then the
following conditions are equivalent if (X ,ty) and (Y, oy) are NSPT,, spaces:

(1 GINIS a NGSP continuous mapping,

(i)  @n"'(B)isaNGSPOSin (X, ty) for each NOS Bin (Y, o).

(iiiy  For every NP p(op.y) in (X, Ty) and for every NOS B in (Y, o) such that n(NPpapy)) €
B, there exists a NGSPOS A in (X, ty) such that (p(p.)) € A and on(4) S B.

Proof: (i) (ii) is obvious, since @x 1 (A) = (on*(A)C.

(ii)=(iii) Let B be a any NOS in (Y, o) and let (Np(e,py)) € (X, Tn). Given @n(Np(py)) € B. By
hypothesis @y 1(B) is a NGSPOS in (X,ty) . Take A=@x*(B). Now Npepy) €
(pN_l(‘-PN(Np((x,B,y)))- Therefore (PJ\I_l((pN(.Np(a,B,y))) € (pj\l_l(B) = A This imp"es (.Np(a,B,y)) €
Aand on(A) = en(eN~'(B)) € B.

(iii)=(i) Let A be a NCS in (Y,o0y). Then its complement, say B = A€ is a NOS in (Y,oy). Let
Nb(opy) € (X, ty) and @n(Np(ap.y)) € B. Then there exists a NGSPOS, say C'in (X, Ty) such that
Np((x,B,y) € C and (PN(C) CB. Now Cc (PN_l((PN(C)) < (PN_l(B) . Thus .Np(oc,B,y) € (PN_l(B) :
Therefore oy~ (B) is a NGSPOS in (X, ty) . Thatis N 1(A®) is a NGSPOS in (X, Ty) and hence
@n~1(A) isaNGSPCS in (X, ty). Thus ¢y is a NGSP continuous mapping.

Theorem: 3.1.23: Let @y : (X, Ty) — (Y, 0x) be a mapping from NT (X, ty) to NT (Y, op). Then
the following conditions are equivalent if (X, ty) and (Y, oy) are NSPT; /, spaces:

(i) @ isaNGSP continuous mapping,

(i)  For each NP p(gyy in (X, ty) and for every Neutrosophic neighborhood (NN for short) A
of en(NpPapy)), there exists a NGSPOS B in (X, ty) such that (Np(ep.y)) € B S on 1 (A).

(iiiy  For each NP pqpy) in (X, Ty) and for every NN A of on(Np(ap.y)). there exists a NGSPOS
Bin (X,ty) suchthat (Nppy)) € B and @yn(B) S A.

Proof: (i)=(ii) Let (Np(ap,y)) € (X,TN) and let A be a NN A of @x(Np(ap,y)). Then there exists a
NOS Cin (Y,0y) such that @x(Nppyy) € C S A. Since @y is a NGSP continuous mapping,
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(pN_l(C) = B(Say), is aNGSPOS in (X"T.N) and (,Np(a,ﬁ,y)) eEBC (pN_l(A)

(ii)=(iii) Let (Np,py)) € (X, Tx) and let A be a NN of @ (Np(«p.y))- Then there exists a NGSPOS
Bin (X,ty) such that (Npipy)) € B S @y 1(A), by hypothesis. Therefore (Nppy)) € B and
on(B) S on(en ' (A) S A.

(iii)=(i) Let B be a NOS in (Y,oyx) and let (Npiupy)) € @n 1(B). Then @n(Np(opy)) € B.
Therefore B is a NN of @x(Np(sgp.y))- Since B is NOS, by hypothesis there exists a NGSPOS 4 in
(X,tn) such that (Npgy) €A S @n " (on(A)) S (pN_l(B). Therefore @y~ (B) is a NGSPOS
in (X, ty). Hence @y is a NGSP continuous mapping.

Theorem: 3.1.24: Let gy : (X,ty) — (Y, 0y) be a mapping from NT (X, ty) to NT (Y, ox). Then
the following conditions are equivalent if (X,rN) is aJ\IS'PTl/2 spaces:

(1 GINIS a NGSP continuous mapping,

(i) IfBisaNOSin (Y,oy) then @y 1(B) isaNGSPOS in (X, y),

(i) oy~ (inty(B)) € clyCinty (cly (@x~'(B)))) for every NS Bin (¥, o) .

Proof: (i)&(ii) is obviously true by Theorem 3.1.22

(ii)=(iii) Let B be any NS in (Y, oy). Then inty(B) is @ NOS in (Y, oy). Then @y~ (inty(B)) is a
NGSPOS in (X, ty). Since (X, y) is a NSPTy, space, @y~ (inty(B)) is a NSPOS in (X, ty).
Therefore

@y~ (inty(B)) C cly(inty (clN (cpN‘l(intN(B))))) < cly(inty (dN ((pN"l(B))>).

(iii)=(@) Let B be a NOS in (Y,on) . By hypothesis N 1(B) = @x (inty(B)) €
cly(inty (clN (q)N_l(B))>). This implies @y~ (B) is NBOS in (X, ty). Therefore it is a NGSPOS in
(X,ty),. and hence ¢y is a NGSP continuous mapping, by Theorem 3.1.22

Theorem: 3.1.25: Let gy : (X, Ty) — (Y, 0x) be a mapping from NT (X, ty) to NT (Y, oy). Then
the following conditions are equivalent if (X,ty) and (X,ty) are NSPT,,, spaces:

(i) @y is a NGSP continuous mapping,

(ili)  @n (spinty(B)) < cly(inty(cly(@yN(B)))) for each NOS B of (Y, oy),

(iv)  @n(inty (cly(inty((4)))) € cly(@n(A)) for each NS A of (X, Ty)

Proof: (i)=(ii) Let B be a NCS in (Y, oy). Then @y~ *(B) is a NGSPCS in (X, ty) - Since (X, y)
is a NSPT,,, space, @y *(B) is a NSPCS. Therefore inty (CIN(intN (q)N_l(B))) C o I(B) =
@N~* (spely(B)).

(i)=(iii) can be easily proved by taking complement in (ii).

(iii)=>(iv) Let A€ (X,ty) . Taking B = @n(A) we have A S @y *(B). Here inty ((pN(A)) =
inty(B) is a NOS in (Y,oy) . Then (iii) implies that ¢y *(spinty(inty(B)) €
cly (inty (cly (N~ (intyB)))) < cly(inty(cly(@x2(B)))). Now we have cly(inty(cly(A)))¢
cly (inty (cly (@n " (BE))C < gy~ (spinty (inty(BE))C . This implies inty (cly(inty((4)))

@n 1 (spcly (clN(B))) . Therefore @y (intN (clN (intN((A)))> < @y <(PN_1 <spclN (clN (B)))) c
cly(B) = cly(en(A).
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(iv)=(i) Let B be a any NCS in (Y,oy). Then @y (B) is a NS in (X,ty) . By hypothesis

on~1(B) is a NBCS and hence it is a NGSPCS in (X, ty). Thus @y is a NGSP continuous mapping.

Theorem: 3.1.26: A mapping @y : (X,ty) = (Y,0on) is @ NGSP continuous mapping if
cly(inty (cly(@n~1(A)))) € on~t(cly(A)) for every NS Ain (Y, oy).

Proof: Let A be a NOS in (Y,oy). Then A is a NCS in (Y, oy).Therefore cly(A€) = AC. By
hypothesis,

cly (inty (cly (@n " (A))) € @n~ (cln(A9)) = n~*(A%). Now (inty(cly(inty(@y " (4))))° =
cly(inty (cly(@n " (A9)))) € on T (AS) = (ex *(ANE . This  implies onH(A) €
inty(cly(inty(@x"1(A4)))). Hence @y 1(A) is aNaOS in (X, ty) and hence it is a NGSPOS in
(X,,rN). Therefore @y is a NGSP continuous mapping, by Theorem 3.1.22.

Theorem: 3.1.27: Let gy : (X,ty) — (Y, 0p) be a mapping from NT (X, ty) to NT (Y, oy). Then
the following conditions are equivalent if (X, ty) is a NSPT;/, spaces:

(i) GINIS a NGSP continuous mapping,

(i)  @yx"'(B)isaNGSPCS in (X, ty) for every NCS Bin (Y, oy),

(i)  inty(cly(inty(@n " (A)))) S @xn~ (cly(A)) for every NS Ain (Y, oy).

Proof: (i) (ii) is obviously true by Definition 3.1.1

(ii)=(iii) Let A be a NS in (Y, oy). Then cly(4) is a NCS in (Y, oy).. By hypothesis, @n~1(cly(A))
is a NGSPCS in (X, ty). Since (X, ty) is a NSPT;, space, @y~ 1(cly(A)) is a NSPCS in (X, ).
Therefore we have inty (cly(inty (N~ (cy@))) € on H(cn(A) . Now
inty (cly(inty (on " (A)))) S inty(cly(inty(on " (cdy(B)))) € @~ (cn(A)).

(iii)=>(i) Let A be aNCS in (Y, 0y). By hypothesis inty (cly(inty(on " (4)))) € on~* (cln(A)) =
@n~1(4) . This implies @y~1(A) is a NBCS in (X, Ty) and hence it is a NGSPCS. Thus ¢y is a
NGSP continuous mapping.

3.2 NEUTROSOPHIC GENERALIZED SEMI PRE IRRESOLUTE MAPPING

In this part, we endeavor to offer an extensive view of NGSP irresolute mappings in
Neutrosophic topological spaces, outlining their theoretical bases, fundamental attributes.
Definition 3.2.1: A map @ : (X,rN) - (Y, "N) is called a Neutrosophic generalized semi-pre
irresolute (NGS™P irresolute for short) mapping if @x~'(D) is a NGSP closed sets in (X, ty) for
every NGSP closed set D of (Y, oy).
Example 3.2.2: Let X = {a,b},Y = {u,v} and
K; = {x,(0.5,0.6,0.1),(0.5,0.4,0.1)}, K, = {y,( 0.5,0.3,0.2),(0.5,0.7,0.2)}. Then 1y = {Oy, 15, K;}
and oy = {0y, 1y, K2} are NTS on (X,ty) and (Y,oy) respectively. Define a mapping ¢y :
(X,tn) = (Y, 0p) by ¢n@ =u  @yx(b)=v . Here the neutrosophic set Kz =
{y,(0.3,0.3,0.7),(0.2,0.3,0.7)} is @ NGSP closed set in (Y,oy). Then @y is a NGSP irresolute
mapping since @y~ (K3) is NGSP closed set in (X, ty).
Theorem: 3.2.3: If @y : (X,ty) — (Y, o) is a NGSP irresolute mapping then ¢y is a NGSP
continuous mapping but not conversely.
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Proof: Let ¢y be a NGSP irresolute mapping. Let D be any Neutrosophic closed sets in (Y, oy).
Then D is a NGSP closed sets and by hypothesis @y~ (D) is a NGSP closed sets in (X, ty). Hence
@y is a NGSP continuous mapping.

Example 3.2.4: Let X=1{ab} , Y={uv} and K; ={x,(0.4,0.3,0.6) , (0.5,0.3,0.5)} , K, =
{y,(0.6,0.7,0.3),(0.7,0.8,0.3)}. Then 1ty ={O0y, 1y, K;} and oy = {0y, 1y K,} are NTS on
(X,ty) and (Y,oy) respectively. Define a mapping @y : (X,ty) = (Y,on) by @n(@) =1,
@n(b) =v . Then @y is NGSP continuous mapping since for a neutrosophic closed set K§ =
{y,(0.3,0.3,0.6),(0.3,0.2,0.7)} in (Y,oy), its inverse image @yx~*(KS) is NGSP closed set in
(X,rN) . But @y is not a NGSP irresolute mapping. For the neutrosophic set K; =
{y,(0.4,0.3,0.6), (0.5,0.3,0.5)} is NGSP closed set in (Y, oy) but @x~1(K3) is not a NGSP closed
setin (X, ty).

Theorem: 3.2.5: Let @y : (X,tn) = (Y,0n) and Wy : (Y, o) - (Z,ny) be a NGSP irresolute
mapping. Then @y o Wy : (X, Ty) = (Z,ny) is a NGSP irresolute mapping.

Proof: Let D be a NGSP closed set in (Z,ny). Then Wy~ (D) is a NGSP closed set in (Y, oy).
Since ¢y is @ NGSP irresolute, cpN‘l(lPN_l(D)) is @ NGSP closed set in (X,ty), by hypothesis.
Hence @y o Wy is a NGSP irresolute mapping.

Theorem: 3.2.6: Let @y : (X,ty) — (Y, 0x) be @ NGSP irresolute mapping and Wy : (Y, oy) —
(Z,ny) be a NGSP continuous mapping. Then Wy o @y : (X, ty) = (Z,ny) is a NGSP continuous
mapping.

Proof: Let D be a Neutrosophic closed set in (Z,ny). Then Wy™*(D) is a NGSP closed set in
(Y, op). Since @y is @ NGSP irresolute mapping, cpN‘l(lPN_l(’D)) is a NGSP closed set in (X, Ty).
Hence @y o Wy is a NGSP continuous mapping.

Theorem: 3.2.7: Let @y : (X,ty) — (Y, 0n) be a mapping from a NT (X, ty) into a NT (Y, oy).
Then the following conditions are equivalent if (X, ty) and (Y, oy) are NSPT; /, spaces:

(i) @y is a NGSP irresolute mapping,

(i)  @n (D) is aNGSP open setin (X, Ty) for each NGSP open setin (Y, oy),

(i)  @n '(spinty(D)) S spinty(¢@yN~* (D)) for each NS D of (Y, oy),

(iv)  spcly(on (D)) € @y~ (spcly(D)) for each NS D of (Y, oy).

Proof: (i) (ii) is obvious, since @y~ (B®) = (on *(B)".

(ii)=(iii) Let D be any NS in (Y,oy) and spinty(D) € D. Also @y~ (spinty(D)) € @x~1(B).
Since spinty(D) is a NSP open set in (Y,oy), it is @ NGSP open set in (Y,oy). Therefore
@y~ (spinty(D)) is a NGSP open set in (X, ty), by hypothesis. Since (X, ty) is a NSPT, /, space,
oy M(spinty(D)) is a  NSP  open set in  (X,Ty) - Hence

ont (spintN('D)):spintN (on~* (spintN('D))) c spinty(ox~1(D))

(iii)=(iv) is obvious by taking complement in (iii).

(iv)=(i) Let D be a NGSP closed set in (Y, oy). Since (Y,oy) is a NSPT, /, space, D is a NSP
closed sets in (Y, oy) and spcly(D) = D. Hence @ (D) = @n 1 (spcly(D)) 2 spely(@y 1 (D)),
by hypothesis. But @x~'(D) S spcly(on~'(D)). Therefore spcly(@n™'(D)) = @x (D). This
implies @y ~1(D) is a NSP closed sets and hence it is @ NGSP closed set in (X, ty). Thus @y is a
NGSP irresolute mapping.

2 &
U g o
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Theorem: 3.2.8: Let gy : (X, ty) — (Y, 0y) be a NGSP irresolute mapping from a NT (X, ty) into
(Y,on). Then oy~ *(D) € spintN(pr‘l(clN(intN(clN(’D))))) for every NGSP open set D in
(Y,op), if (X,ty) and ’(Y, oy) are NSPT; , spaces. ’

Proof: Let D be a NGSP open set in (Y, oy). Then by hypothesis @y~(D) is a NGSP open set in
(X,ty). Since (X,ty) is NSPT,,, space, @y (D) is a NSP open set in (X, ty). Therefore
spinty(on~ (D)) = oy~ 1(D). Since (Y, o) is NSPT,/, space, D is a NSP open set (Y,oy) and
D < cly(inty(cly(D))). Now, @y~ (D)= spinty(ex~1(D)), implies

on~H(D) € spinty @y~ (cly(inty(cly(D))))).

2 S
Uy . oY

3.3 NEUTROSOPHIC GENERALIZED SEMI PRE COMPACT SPACE.

In this segment, our goal is to furnish a thorough exploration of NGSP compact space within
Neutrosophic topological spaces, clarifying their theoretical underpinnings and fundamental
characteristics.

Definition: 3.3.1: Let (X,ty) be a NTS. If a family {(x, ug, (x), o6, (%), vg,(x)):1 € ]} of NGSP
open sets in (X, ty) satisfies the condition U {(x, ug, (x), o6,(x), vg,(x)):1 € ]} = 1y, then is called a
NGSP open cover of (X, ty).

Definition: 3.3.2: Let (X,ty) be a NTS. A finite subfamily of a NGSP open cover
{(x, ng, (%), 05,(x), v6,(x)): 1 € J} of (X, ), which is also a NGSP open cover of (X, ty) is called a
finite subcover of {(x, ug, (x), o6, (x), vg,(x)):1 € J}.

Definition: 3.3.3: A NTS (X, ty) is called NGSP compact iff every NGSP open cover of (X, ty)
has a finite subcover.

Definition: 3.3.4: Let (X,ty) be a NTS. A family {(x, pg,(x), ok, (x), vk, (x)):1 € ]} of NGSP
closed sets in (X, ty) satisfies the finite intersection property (in short NIP) iff every finite
subfamily  {(x, pg, (x), ox, (%), v, (x)):i = 1,2,...,n} , of the family satisfies the condition
Ni=1 {{%, HK; (), ok, (X):Yxi (x))} # Oy.

Theorem 3.3.5: A NTS (X,,TN) is NGSP compact iff every family {(x, Kk, (%), ok, (%), vk, (x)):1 €
J} of NGSP closed sets with finite intersection property has a non empty intersection.

Proof: Let NTS (X,ty) is NGSP-compact. Suppose, {(x, g, (x), ox,(x), yx,(x)):i € ]} be any
family of NGSP-closed sets in (X, ty) such that n {(x, pg,(x), ok, (%), vk, (x)):1 € J}=0y. Thus,
this implies that, {(x,/\uKi(x),/\oKi(x),VyKi(x))} =0y, {Aug,(x):i €]} =0, {Aog,(x):i€]J} =0
and {VyKi(x):i € ]} =1 |, = U {(x, ug, (x), ok, (), vy, (X)) 1 €]} =1y . Thus,
{(x, ug, (%), o, (), yi,(X)):1 €]} is @ NGSP open cover of (X,ty). Since (X,Ty) is NGSP-
compact, so every NGSP-open cover of (X,Ty) has finite subcover. Therefore, (X, ty) has finite
subcover {(X, kg, (x), og, (), yg,(¥)):1 = 1,2, ..., n}. So UlY, {(X, uKi(x),cKi(x),yKi(x))} = 1y, this
implies  that  {(x, ViZ;pg, (%), Visog, (), ALy, 1€} =1y, Vi {pg, ()} =0
Viti{og, (x)} = 0 and AL, {yk,(x)} = 1implies that n;, {(x, ug, (x), GKi(X)'YKi(X))} = Oy, Which
contradicts to our hypothesis. Hence, every family of NGSP closed set with finite intersection
property has a non empty intersection.

Conversely, suppose every family of NGSP closed set with finite inersecton property has a non
empty intersection. Assume that , {{x, ug, (x), og,(x), vk, (x)):1 € ]} is any NGSP open cover of
(X,TN), then U {(x, uk, (x), ok, (%), vk, (x)): i € J} = 1y. Therefore {{x, ug, (x), ok, (x), yk,(¥)):1 € J}
is a family of NGSP closed sets in (X, Ty) such that N {(x, p, (x), ok, (%), yg,(¥)):i € ]} = Oy. By
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assumption, we can find a finite subfamily, {(x, ug,(x), ox,(x), vk, (x)):i = 1,2,...,n} such that
N, {(x, ug, (x), GKi(x),yKi(x))} = Oy, which implies, Ui, {(x, ug, (x), O'Ki(X),YKi(X)>} = 1y. Thus
{(x ug, (), o, (), yi,(®)):1 = 1,2,...,n} = 1y is a finite subcover of (X,ty). Hence (X,ty) is
NGSP compact.

Definition: 3.3.6: Let (X,Ty) be a NTS and A be a Neutrosophic set in (X,ty). If a family
{(x, ug, (%), o, (), yi, (x)):1 € J} of NGSP open sets in (X, ty) satisfies the condition A Cu
{(x g, (%), ok, (%), vk, (¥)):1 € J}, then it is called a NGSP open cover of A.

Definition: 3.3.7: Let (X,rN) be a NTS. A finite subfamily of a NGSP open cover
{(x ug, (x), og, (%), Yk, (x)):1 € J} of A, which is also a NGSP open cover of A is called a finite
subcover of {{x, g, (x), og, (), yk,(x)):i € J}.

Definition: 3.3.8: The Neutrosophic set A = (x,pa,04,v4) in @ NTS (X,ty) is called NGSP
compact iff every NGSP open cover of A has a finite subcover.

Theorem 3.3.9: Let (X,ty) be a NTS. A NGSP closed subset of a NGSP compact space is
Neutrosophic compact relative to (X, ty).

Proof: LetAbe a NGSP closed subset of (X, Ty). Let {(x, ug, (%), ok, (%), v, (X)): i € ]} be NGSP
open cover of A. Then the family {{x, pg,(x), og, (%), yk,(x)):1 € J} U AC is NGSP open cover of
(X,,TN) . Since (X,,TN) is a NGSP compact, there is a finite subfamily
{(x, bk, (x), og, (%), yg,(¥)):1 = 1,2, ...,n} of NGSP open cover, which also covers (X,,TN). If this
cover contains A we discard it. Otherwise leave the subcover as it is . Thus, we obtained a finite
NGSP open subcover of A. S0 A is NGSP compact relative to (X, Ty).

Theorem 3.3.10: Let (X, ty) be aNTS. If (X, Ty) is NGSP compact space, then it is compact.
Proof: Suppose, (X,,TN) be a NGSP compact. Assume contrary that (X,,TN) is not fuzzy compact,
then there is atleast one fuzzy open cover {(x, p, (x), o, (x), yk,(x)): i € ]} of (X, Ty) not has a finite
subcover, implies that U {(x, ug, (x), ox,(x),yx,(x))} = 1y a open cover of (X,ty) such that
Uy {(x, ng, (%), ok, (%), i, (x))} = 1y. Since, every Neutrosophic open set is NGSP open set.
Therefore a open cover {{x, pg, (x), ok, (%), yk,(x)): i € J} of (X,TN) becomes NGSP open cover of
(X, ty) such that Ui {(x, pg, (x), ok, (), vk, (x))} = 1y, which is a contradiction. Hence, if (X, ty)
is NGSP compact space, then it is compact.
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