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ABSTRACT 

The Voltage and frequency regulation in single-phase inverters is a critical challenge in micro grid 

systems, particularly under dynamic load and renewable energy conditions. This study leverages 

machine learning (ML) models to address these challenges, focusing on Adaptive Neuro-Fuzzy 

Inference System (ANFIS), Linear Regression, and Gradient Boosting Regression (GBR) algorithms. 

The models predict the Pulse Width Modulation (PWM) waveforms required for a single-phase 

inverter linked to a lamp load. Results show that the ANFIS algorithm achieves 97% accuracy, 

Linear Regression achieves 98.16% accuracy, and the newly introduced GBR model achieves 

99.02% accuracy in predicting PWM waveforms. The comparative analysis highlights the superior 

performance of GBR in terms of prediction accuracy and adaptability to nonlinear data. This 

experimental framework validates the applicability of ML models for improving micro grid 

efficiency and reliability. 

Keywords: Voltage regulation, Frequency control, Machine learning, Gradient Boosting Regression, 

Adaptive Neuro-Fuzzy Inference System, Linear Regression, Pulse Width Modulation, Micro grid 

systems. 

 

I. Introduction 

Droop control and automatic generation control (AGC) are among the most widely used strategies in 

micro grids for load sharing and frequency regulation. However, these strategies come with certain 

limitations. Some disadvantages of droop control include its inability to maintain precise voltage, 

sensitivity to load changes, limited performance in standalone systems, and difficulty in achieving 

equal power sharing. The challenge of equal power sharing has been partially addressed through the 

implementation of the universal droop controller. On the other hand, AGC has its drawbacks, such as 

communication delays, complex implementation, increased wear and tear on generators, sensitivity 

to model inaccuracies, challenges in handling nonlinearities, limited adaptability to rapid changes, 

and dependency on centralized control. Despite these limitations, both droop control and AGC 

remain effective and widely used control strategies in micro grids. Furthermore, ongoing research 

and advancements in control technologies continue to mitigate these drawbacks, enhancing the 

overall performance of micro grid control systems. Machine Learning (ML) plays a significant role 

in micro grids, offering a wide range of applications and addressing many of the challenges 

associated with traditional control strategies. By leveraging the power of data-driven algorithms, ML 

enhances the efficiency, reliability, and adaptability of micro grid systems. One of the key 

applications of ML in micro grids is forecasting energy demand and generation. By analyzing 

historical data and weather patterns, ML algorithms can accurately predict energy requirements and 

renewable energy production. These forecasts enable better planning and resource optimization, 

ensuring a more balanced energy supply. 

ML also aids in managing demand response by analyzing real-time data to predict peaks in energy 

demand. This allows for the automatic triggering of demand response actions, helping to balance 

supply and demand, optimize energy usage, and avoid peak pricing. It derives insights from 
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historical data known as training data. This dataset is utilized to instruct the model about patterns and 

relationships relevant to its designated task. ML algorithms, functioning as mathematical models, 

learn from data and subsequently make predictions or decisions. Among the prevalent types of 

machine learning algorithms are support vector machines, linear regression, neural networks, 

decision trees, and others. For instance, in supervised learning, a machine learning model is trained 

on a dataset comprising input features (attributes) and their corresponding labels (desired outputs). 

The model acquires the ability to map input features to output labels during this training phase, 

where it is exposed to a labeled dataset to discern patterns. Subsequently, the trained model 

undergoes testing on a distinct data set to assess its performance and its capacity to generalize to new 

as well as unseen data. The three primary categories of machine learning are supervised learning, 

unsupervised learning, as well as reinforcement learning. Supervised learning involves training the 

model on a labeled dataset, allowing it to learn and predict labels for new, unseen data. Conversely, 

unsupervised learning entails the model learning patterns and relationships from unlabeled data. 

Tasks such as clustering and dimensionality reduction are typical in unsupervised learning. As for 

reinforcement learning, the model learns through interaction with an environment, receiving 

feedback in the form of rewards or penalties. Deep learning, a subset of machine learning, 

concentrates on utilizing neural networks with multiple layers, commonly known as deep neural 

networks. Notably, deep learning has demonstrated impressive accomplishments in tasks like image 

and speech recognition. Diverse machine learning algorithms, each tailored for specific tasks and 

data types, exist. Figure 1 provides an overview of several prevalent types of machine learning 

algorithms. 

 
Figure 1:  Types of machine learning algorithms 

In addition, ML algorithms optimize the operation of various micro grid components, such as 

renewable energy sources, storage systems, and Distributed Energy Resources (DERs). By 

considering factors like weather conditions and load patterns, ML facilitates real-time decision-

making, ensuring efficient energy management and enhanced system performance. Fault detection 

and anomaly recognition are also critical applications of ML in micro grids. By analyzing sensor and 

device data, ML techniques can identify irregularities and faults in system components. This enables 

timely maintenance, reduces the risk of failures, and improves overall system reliability.ML further 

contributes to grid stability by predicting and mitigating voltage fluctuations and frequency 

variations. Advanced ML-based control algorithms enhance the stability and reliability of micro grid 

operations, ensuring smooth and uninterrupted performance. Through these capabilities, ML 

significantly improves the adaptability and robustness of micro grids, making them more resilient to 

dynamic changes in energy demand and supply while promoting sustainability. Furthermore, ML 

algorithms are instrumental in detecting islanding events within micro grids.  By identifying 

such occurrences, they enable the execution of appropriate control actions to ensure safe and 
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efficient island operation. In the domain of cybersecurity, ML enhances microgrid resilience by 

detecting and mitigating potential cyber threats. By analyzing anomalies in data patterns, ML-based 

systems can implement robust security measures to safeguard against cyber-attacks. Additionally, 

ML analyzes load profiles and consumer behavior to optimize energy delivery. This involves 

predicting peak demand periods, understanding user preferences, and tailoring energy management 

strategies to improve system performance and customer satisfaction. Machine Learning (ML) falls 

within the realm of Artificial Intelligence (AI) and emphasizes the creation of algorithms and 

statistical models, empowering computer systems to execute tasks without direct programming. The 

fundamental concept driving machine learning is to enable machines to discern patterns and make 

decisions grounded in data, rather than depending on explicit programming instructions. Unlike 

traditional programming where developers craft precise code to guide a computer through a 

designated task, machine learning systems leverage data to grasp patterns and relationships, 

facilitating predictions, classifications, or decisions without explicit programming for each situation. 

The integration of ML into microgrids significantly enhances their efficiency, reliability, and 

sustainability. ML-driven solutions enable smart, adaptive operations, making microgrids more 

resilient and responsive to fluctuations in energy demand and supply. For voltage and frequency 

regulation, two ML algorithms were utilized to predict the Pulse Width Modulation (PWM) 

waveforms for a single-phase inverter connected to a lamp load. The algorithms employed were the 

Adaptive Neuro-Fuzzy Inference System (ANFIS) and Linear Regression. Their performance was 

compared based on the accuracy of their PWM waveform predictions. This experimental verification 

serves as a prototype, demonstrating the potential of ML algorithms in microgrid applications and 

paving the way for broader future expansions in this field. 

 

II. Literature 

A novel control method for DC/AC inverters in microgrids, leveraging virtual synchronous machine 

(VISMA) principles to mimic the inertia of synchronous generators. By extracting virtual inertia 

from a DC bus capacitor, the approach ensures seamless transitions between grid-connected and 

islanded modes, enhancing system stability and synchronization. The method eliminates the need for 

energy storage, offering robust performance under varying grid conditions [1]. The grid-forming 

converters (GFM) in enhancing power system performance under high penetration of inverter-based 

resources. It discusses advancements like virtual synchronous machines and adaptive control 

strategies, addressing stability, inertia challenges, and black start capabilities. Insights emphasize 

GFM's potential as a substitute for traditional synchronous generators in future power grids [2]. An 

advanced frequency and voltage control techniques for inverter-interfaced distributed energy 

resources (IIDGs) in microgrids. It examines hierarchical and decentralized control strategies, 

emphasizing challenges like non-linear impedance and transient dynamics. And proposes innovative 

solutions, including droop modifications, virtual impedance loops, and heuristic algorithms, to 

improve stability, power sharing, and system reliability under dynamic conditions [3]. The 

investigation of smart PV inverters for mitigating voltage and frequency deviations in smart grids.  

 The study evaluates active power curtailment, volt-watt, and frequency-watt control 

techniques through experiments on the Maui Smart Grid Project. Results show these methods 

effectively enhance voltage stability and grid frequency regulation in diverse PV penetration 

scenarios [4]. A rule-based adaptive control strategy is proposed for grid-forming inverters in island 

power systems to enhance frequency stability. Moreover, introduces a virtual synchronous machine-

based control approach that dynamically adjusts inertia and damping parameters based on network 

conditions. Simulation results highlight improved transient stability and frequency regulation in 

systems with high renewable energy penetration [5]. It provides a comprehensive review of 

multilevel inverters (MLI) with reduced switch counts, emphasizing their application in high and 

medium power systems. The study presents an 81-level switched ladder MLI, validated through 
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MATLAB/Simulink simulations and tested with resistive and impedance loads. The results highlight 

reduced harmonic distortion and efficient speed control of induction motors, demonstrating the 

topology's viability for renewable energy and motor drive applications [6].  

 The stability challenges of PV inverters under weak grid conditions, focusing on control loop 

and output voltage instabilities. It highlights critical non-linear factors such as phase-locked loops, 

dead-time, and reactive power compensation, emphasizing the need for advanced modeling and 

holistic stability criteria. Future work should address large-scale integration, dynamic interactions 

between components, and improved analysis methods for non-linear and coupled systems [7]. This 

paper explores the impacts of high penetrations of inverter-based resources (IBRs) on power system 

stability, emphasizing differences from synchronous machines in terms of control, inertia, and fault 

response. It highlights challenges like maintaining synchronicity, distributed generation 

management, and protection system adaptation while advocating for advanced simulations and smart 

inverter technologies. Despite added complexity, high IBR integration is achievable through 

innovative control strategies, modeling improvements, and adaptive planning [8]. This review 

highlights the advancements and challenges of multilevel inverters (MLIs), emphasizing their 

efficiency, reduced harmonic distortions, and suitability for renewable energy, motor drives, and 

FACTS applications. It identifies future priorities like reducing switch count, enhancing control 

schemes, and integrating high-bandgap semiconductors to address cost, complexity, and thermal 

management issues. The article serves as a guideline for researchers and industrialists to innovate 

more efficient, reliable, and scalable MLI technologies for diverse power system applications [9].  

 This paper presents a unified control design approach for power electronics converters, 

addressing stabilization and tracking problems using bilinear and sliding mode control models. It 

emphasizes practical feasibility, proposing systematic solutions to handle diverse converter 

topologies while highlighting regularization techniques for easier implementation. Future work will 

extend the approach to experimental validation, hybrid control applications, and observer design for 

systems with partial state information [10]. This paper reviews modern feedback control methods for 

voltage regulation in DC/DC converters, highlighting their advantages, limitations, and performance 

metrics in DC microgrids. It discusses approaches to enhance robustness, including adaptive, robust 

control, and the DUEA framework, with DUEA emerging as the most promising for balancing 

performance and disturbance rejection. The work suggests future research on combining techniques, 

improving computational efficiency, and adapting methods to various converter types and 

applications [11]. This paper presents an equal-weighted cost function-based model predictive 

control (MPC) method for power converters, eliminating the need for weighting factor tuning by 

normalizing sub-terms in the cost function. Experimental validation on a grid-connected single-phase 

three-level T-type inverter demonstrates that the proposed method maintains robust performance 

under varying operating conditions and parameter mismatches. The results show that this approach 

simplifies MPC design while ensuring reliable performance compared to conventional MPC [12].  

This paper provides a comprehensive review of grid-connected photovoltaic (GCPV) systems, 

focusing on inverter configurations, modulation techniques, and control strategies. It discusses 

advancements in inverter topologies, the importance of multi-level inverters (MLIs), and the use of 

intelligent algorithms for low harmonic content. Future research aims to address challenges in high-

voltage, high-power inverter designs, the integration of intelligent control strategies, and enhancing 

grid reliability with low-cost solutions for PV systems [13]. The paper addresses challenges in fault 

detection and classification for transmission lines integrated with inverter-based generators using 

advanced machine learning techniques.  

A two-layer classification model achieved high accuracy (up to 100% for fault detection and 99.4% 

for fault classification) through optimized features and Bayesian tuning. Results underscore the 

method's robustness and potential for real-world implementation in renewable-integrated grids [14]. 

The study introduces a machine-learning-based prognostic approach for monitoring DC-DC 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 54, Issue 1, No.3, January : 2025 
 

UGC CARE Group-1                                                                                                                       179 

converters in photovoltaic systems, emphasizing fault detection under variable environmental 

conditions. Utilizing a Multi-Valued Neuron Neural Network, the method achieves classification 

accuracy exceeding 91% during training and validation. The results highlight its potential for 

practical deployment, surpassing standard SVM techniques in robustness and efficiency [15]. The 

paper integrates Particle Swarm Optimization (PSO) with a Modular Multilevel Converter (MMC) 

for advanced power quality control in electrical applications. The unified power flow controller 

minimizes harmonics, optimizes voltage stability, and ensures efficient real and reactive power 

management. MATLAB simulations validate the proposed method's capability to handle dynamic 

operating conditions and improve system robustness [16].  

This paper proposes an automated methodology for designing machine learning-based fault 

classifiers for multilevel inverters (MLIs) using a combined optimizer. By selecting optimal features 

and classifiers through Ant Colony Optimization (ACO), the approach achieves high classification 

accuracy (97.84% for CHBMLI and 98.61% for PUC) for fault detection under open circuit and 

short circuit conditions. Experimental validation confirms the effectiveness of the classifier, 

demonstrating its potential for improving the reliability and lifespan of MLIs by enhancing fault 

detection [17]. The study focuses on enhancing fault diagnosis in cascaded H-bridge multilevel 

inverters (CHMLIs) used in distributed power generators. By leveraging machine learning 

techniques, particularly Support Vector Machines (SVM) and k-Nearest Neighbors (k-NN), it 

compares their efficacy in diagnosing open switch faults. Probabilistic Principal Component 

Analysis (PPCA) is employed for feature optimization, ensuring high accuracy and efficiency, with 

SVM outperforming k-NN in fault diagnosis speed and reliability. This methodology shows potential 

for broader applications in high-power renewable energy systems [18]. This paper provides a 

comprehensive study of online learning applications for power converters and motor drives, focusing 

on condition monitoring, fault detection, stability assessment, and model predictive control. It 

discusses the development of online learning models, algorithms, and practical case studies to 

address challenges in the efficiency and reliability of these systems. The paper also highlights future 

opportunities and provides guidelines for leveraging online learning to improve the design, analysis, 

and control of power converter and motor drive systems [19]. This paper presents an adaptive 

machine learning-based fault detection and classification technique for transmission lines connected 

to inverter-based generation, such as PV plants and wind farms. The method utilizes optimized 

ensemble tree classifiers and setting-group-based adaptation, achieving high classification accuracy 

(99.4%) across various system topologies and fault scenarios.  

Future work will explore incremental learning, real-time implementation, and the integration of fault 

localization and direction features to enhance performance and scalability [20]. This paper explores 

the use of Reinforcement Learning (RL) agents, specifically Deep Q-Network (DQN) and Deep 

Deterministic Policy Gradient (DDPG), for voltage control in DC-DC buck converters, comparing 

their performance with classical controllers like Model Predictive Control (MPC) and Sliding Mode 

Control (SMC). Experimental results show that RL controllers, particularly DQN, offer better 

transient response, robustness against uncertainties, and lower computational costs, while also 

prolonging power switch lifespan. Future research is focused on reducing computational costs and 

ensuring stability in AI-based controllers for power systems [21]. This paper provides an overview of 

machine learning algorithms applied to intelligent data analysis, highlighting their use in real-world 

applications such as cybersecurity, smart cities, healthcare, and agriculture. It discusses the 

challenges of data collection, quality, and algorithm selection, and emphasizes the need for enhanced 

data preprocessing and hybrid learning models. The paper concludes by identifying future research 

opportunities to address these challenges and improve the effectiveness of machine learning in 

diverse application domains [22]. This article provides an introduction to machine learning (ML) and 

deep learning (DL), explaining their role in building analytical models for intelligent systems and 

their applications in electronic markets. It discusses the process of model building, including data 
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input, feature extraction, and model assessment, and highlights challenges in human-machine 

interaction and AI servitization. The paper emphasizes the emerging field of AI-as-a-Service (AIaaS) 

and its potential to transform smart services, offering new business models and applications for 

intelligent systems [23].   

The paper presents a comparative analysis of image classification algorithms from traditional 

machine learning (SVM) and deep learning (CNN) perspectives. The study evaluates their 

performance on datasets of varying sizes and complexities, revealing that SVM excels in small 

sample data scenarios with higher efficiency, while CNN demonstrates superior accuracy for large-

scale datasets due to its advanced feature extraction capabilities. The findings highlight the 

importance of choosing the appropriate algorithm based on dataset size and application needs [24]. 

The study explores the optimization of hyperparameters in machine learning models, a critical aspect 

for enhancing performance across various domains. It provides a comprehensive review of 

techniques like Bayesian Optimization, Grid Search, and Random Search, emphasizing their 

applications, advantages, and limitations. The paper also highlights emerging methods like 

Hyperband and Bayesian Optimization Hyperband (BOHB), offering practical insights into selecting 

appropriate strategies for diverse datasets and computational constraints [25]. 

 

III. Problem statement 

The regulation of voltage and frequency in single-phase inverters is a critical challenge, particularly 

in the context of micro grids where dynamic load conditions, non-linarites, and varying renewable 

energy inputs are common. Traditional control strategies like droop control and automatic generation 

control (AGC) often fail to maintain precise voltage levels or respond effectively to rapid changes in 

energy demand. Droop control struggles with equal power sharing and load sensitivity, while AGC 

faces challenges such as communication delays, centralized control dependency, and limited 

adaptability to model inaccuracies. As a result, these conventional techniques exhibit limitations in 

ensuring stable and efficient operation of inverters under dynamic and uncertain conditions.  

 
Figure 2:  Block diagram of an ML-based approach, emphasizing data-driven optimization and 

predictive 

From the Figure 2, the proposed model for the integration of ML algorithms into voltage and 

frequency regulation introduces a promising approach to address these challenges. ML-based models 

can leverage data from various inverter operations to predict and adaptively regulate output voltage 

and frequency, offering higher accuracy and responsiveness compared to traditional methods. 

However, the application of ML in this domain is not without challenges, including the need for 

precise data training, real-time performance verification, and robustness against uncertainties. This 

study aims to explore and compare the effectiveness of two machine learning algorithms ANFIS and 

Linear Regression in predicting the PWM waveforms required for a single-phase inverter. The 
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investigation will validate the capability of these algorithms in achieving better voltage and 

frequency regulation while addressing the inherent challenges faced by micro grid systems.  

 

IV. Methodology 

a) Adaptive Neuro-Fuzzy Inference System (ANFIS) 

 The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a hybrid intelligent system that 

integrates the reasoning capabilities of fuzzy logic with the learning power of neural networks. The 

primary objective of ANFIS is to model complex systems by using input-output data. Fuzzy logic 

provides a structure to encode knowledge through linguistic rules (such as "if-then" rules), while 

neural networks refine these rules by learning from data. The process begins with fuzzification, 

where crisp inputs are transformed into fuzzy sets using membership functions shown in figure 3.. 

These fuzzy inputs pass through a rule base that applies predefined fuzzy rules, such as "if X is A 

and Y is B, then output is C." Next, a neural network optimizes the membership functions and 

adjusts the rules by learning from the data. This learning is accomplished using backpropagation or 

least squares estimation. Finally, the fuzzy results are defuzzified to produce crisp output values. 

This makes ANFIS highly effective for tasks like control systems, robotics, and nonlinear system 

modeling.   

 
Figure 3:  Structure of ANFIS 

ANFIS stands out for its ability to dynamically adapt and learn, making it a valuable tool for 

modeling systems with nonlinear relationships. It follows a structured architecture resembling a 

multi-layer neural network to combine the strengths of fuzzy logic and neural networks. The 

sequence you provided aligns well with the classic ANFIS structure. The layered structure of ANFIS 

can be visualized as: 

• Inputs layer raw numerical values from the system X = {X1, X2,..., Xn} 

• Fuzzification Layer: Converts inputs to fuzzy sets. 

• Rule Layer: Applies fuzzy rules. 

• Normalization Layer: Ensures the sum of rule strengths equals 1. 

• Defuzzification Layer: Produces crisp outputs from fuzzy conclusions. 

b) Linear Regression 

 Linear Regression is a fundamental statistical method used to model the relationship between 

a dependent variable (output) and one or more independent variables (inputs). It is based on the 

assumption of a linear relationship, where changes in the input variables lead to proportional changes 

in the output variable. It involves finding the best-fit line by minimizing the error between actual and 

predicted outputs. This is typically achieved using the least squares method, which minimizes the 

sum of squared differences between observed and predicted values. Once trained, the model can be 

used to predict outputs for new inputs. Despite its simplicity, linear regression is highly interpretable 

and efficient for modeling linear relationships. However, it struggles with complex, nonlinear 

relationships and is sensitive to outliers. Common applications include predicting trends, pricing 

models, and evaluating the impact of independent variables on outcomes. The static technique 

employed to model the correlation between a dependent variable and one or multiple independent 

variables. It presumes that the connection between the variables is linear, signifying that an alteration 
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in the independent variable(s) corresponds to a consistent modification in the dependent variable. 

Simple linear regression entails one independent variable (X) as well as one dependent variable (Y). 

The relationship between X and Y is represented by the equation of a straight line as given below in 

Equation (1), 

 

    𝑌 = 𝑚𝑋 + 𝑐                     (1) 

where m and c are the slope and y-intercept respectively. Multiple linear regression involves having 

two or more independent variables (X₁, X₂, ..., Xₙ) and a single dependent variable (Y). The 

correlation is represented by the equation as given below in Equation (2), 

  𝑌 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑛𝑋𝑛                          

(2) 

where b_0 is the y-intercept and b_1, b_2,…,b_n are the coefficients for the corresponding 

independent variables. The objective of linear regression is to determine the coefficients' values that 

minimize the disparity between the predicted values (calculated through the regression equation) and 

the actual values of the dependent variable. The most common method for finding the optimal 

coefficients is the Ordinary Least Squares (OLS) method. It reduces the aggregate of the squared 

differences between the detected and predicted values. The formulas for the coefficients in simple 

linear regression which are the sloop and y-intercept are given below in Equations (3) and (4) 

respectively. 

       𝑚 =
𝑛(∑ 𝑥𝑦)−(∑ 𝑥)(∑ 𝑦)

𝑛(∑ 𝑥2)−(∑ 𝑥)2                                   

   (3) 

     𝑏 =
∑ 𝑦−𝑚(∑ 𝑥)

𝑛
                                             

(4) 

For multiple linear regression, the calculation involves matrices, but the principles are similar. Once 

the coefficients are determined, the performance of the model is assessed using various criterion, 

such as the coefficient of determination (R^2), Mean Squared Error (MSE), or Mean Absolute Error 

(MAE). Once the algorithm is trained, it has the capability to forecast outcomes on new or unseen 

data by inputting the values of the independent variables into the regression equation. Linear 

regression is extensively employed for predicting numerical outcomes and understanding the 

relationships between variables in numerous domains like economics, finance, biology, as well as 

engineering. The graphical representation of the linear regression algorithm is given below in Figure 

4. 

 
Figure 4:  Linear Regression Algorithm 

c)     Gradient Boosting 

Gradient Boosting is an advanced machine learning technique that builds a predictive model 

incrementally, focusing on correcting errors made by previous models. It belongs to the family of 

ensemble methods, combining multiple weak learners, usually decision trees, to create a strong 

model. The process begins with a simple model, often a constant prediction such as the mean value 

of the target variable. Residuals, or the errors from this initial prediction, are calculated. A new 
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decision tree is then trained to predict these residuals. This process repeats iteratively, with each tree 

correcting the errors of the combined ensemble from previous iterations. Over time, the model 

becomes increasingly accurate as it minimizes the loss function (e.g., mean squared error or log-

loss). This boosting model uses gradient descent to optimize the model by updating parameters in the 

direction of the steepest decrease in error. It includes Learning Rate for controls the contribution of 

each tree to the final model and Regularization for prevents overfitting by constraining the 

complexity of individual trees. Finally, the applications of Gradient Boosting are widespread, 

ranging from classification tasks to regression problems.  The iterative refinement process in 

Gradient Boosting can be summarized as: 

• Start with an initial model. 

• Calculate residuals (errors) from the current model. 

• Train a new weak learner to predict these residuals. 

• Combine the predictions of all learners to improve accuracy. 

This powerful approach is well-suited for scenarios requiring high performance and accuracy, 

especially in competitions and real-world machine-learning challenges. 

d) Analysis of Data Generation, Training and Testing ML Algorithm 

The methodology utilized for this analysis can be categorized into three different steps and they are 

detailed below. 

Step I: Data Generation 

A single-phase inverter rated at 0.6 kVA is fed from a 12 V constant DC supply with the output 

voltage and frequency being maintained as 230 V and 50 Hz using an Arduino microcontroller.  This 

inverter is connected to a lamp load which is evaluated for three different load conditions of 40 W, 

60 W and 100 W. The inverter developed is a closed loop system in which the regulation of voltage 

and frequency are done using an Arduino microcontroller by comparing the output values to the 

rated values to generate the appropriate PWM waveforms for the inverter.  

 

 
Figure 5:  Closed loop system of the single-phase inverter 

This experimental setup is repeatedly run to obtain about 10,000 values and the data that is obtained 

is collected and stored in an external device for further utilization in training and testing the ML 

algorithms. The block diagram of the feedback control is given in Figure 5. 

Step II - Training ML Algorithm 

The data obtained from the previous step is exported to an excel worksheet and is utilized to train the 

ANFIS and linear regression ML algorithms. The values of voltage and frequency are given as inputs 

to the machine learning algorithms and the PWM coefficient is obtained as the output. It must be 

noted that eighty percent of the data that is obtained from the close loop system is utilized for 

training the ML algorithms whereas the remaining twenty percent of the data is utilized for testing 

purposes. More data for training generally leads to better model performance, especially for complex 

models. Machine learning is an iterative process, and continuous refinement may be necessary based 

on new data or changes in the problem domain. Regularly updating and retraining the model will 

maintain optimal performance. Once the ML algorithms are trained, the process of testing the 

algorithm begins. The remaining twenty percent of the data is used to test the algorithms so as to 

validate the correct functioning of the algorithms. The python scikit-learn framework is utilized as 
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the testing platform for machine learning algorithms. To improve prediction, the model is monitored 

so as to track its performance over time and is updated as needed. 

Step III - Testing ML Algorithm 

 
Figure 6:  Open loop system of the single-phase inverter 

Once the model is trained and tested as mentioned in the previous step, live data from the single-

phase inverter is presented to the algorithm for PWM prediction. For this purpose, the feedback 

control of the single-phase inverter is replaced with the machine learning algorithm as shown in 

Figure 6. The PWM waveform obtained from the machine learning algorithm is compared with that 

of the already obtained PWM waveform from the tested values and the accuracy of the algorithm is 

calculated. A Raspberry Pi which is a Linux based system can be utilized instead of a computer to 

train as well as test the machine learning algorithms so as to improve portability of the system. The 

data obtained can also be stored in a cloud and vice versa so that any hardware irrespective of the 

physical locality can be run from the data available in the cloud storage making this a very flexible 

system.  

 

V. Hardware Implementation 

In the experimental setup, the single-phase inverter is fed from a 12 V constant DC supply, which 

could also be replaced by a battery. The single-phase inverter has an H-bridge architecture consisting 

of two legs, each with two semiconductor switches (MOSFETs) with a rating of 180 A and 60 V. 

The controller is evaluated for three different load conditions of 40 W, 60 W and 100 W, 

respectively. The load switching pattern is such that the load is varied continuously among the three 

different conditions mentioned above. The single-phase inverter is rated at 0.6 kVA and the PWM 

switching frequency is taken as 5 kHz. The switching frequency is selected as a trade-off between 

the quality of the obtained sine wave and the immunity to noise. Higher the switching frequency, 

better the quality of the obtained sine wave but the inverter will be more prone to noise thereby 

requiring a thicker printed circuit board which in turn will cause other issues like increased cost and 

so on. Therefore 5 kHz being the lowest frequency at which a good quality sine wave is obtained is 

taken as the optimal value. The rated voltage as well as the rated frequency of the system is selected 

to be 230 V as well as 50 Hz, correspondingly.  

 
Figure 7:  Experimental Setup of the single-phase Inverter  
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The value of the filter inductor is 0.6 mH with a parasitic resistance of 0.1 Ω and the value of the 

filter capacitor is 20 μF. The design equations utilized for designing the filter inductor as well as the 

filter capacitor are given below in Equations (5) and (6).  

 𝐿 ≥
𝑉𝑜𝑢𝑡.(1−𝐷)

∆𝐼𝐿.𝑓𝑠
                          (5) 

𝐶 ≥
𝐼𝑜𝑢𝑡.(1−𝐷)

∆𝑉.𝑓𝑠
                                    (6) 

where D is the duty cycle, L is the inductance, C is the capacitance, f_s is the switching frequency, 

V_out is the output voltage, I_out is the output current, ∆I_L  is the inductor current ripple and ∆V is 

the voltage ripple. The values of the droop coefficients n and m were taken as 0.0275 and 0.00157 

respectively and that of Ke as 2. Current transformers are utilized for the measurements of the output 

current values when required. The experimental setup of the single-phase inverter is shown in Figure 

7.  

  

VI. Results and Discussions 

The analysis begins with the collection of data from the closed-loop single-phase inverter employing 

a droop controller for regulating voltage and frequency. The collected data is stored in an Excel 

worksheet, with graphs plotted for various system parameters. A serial logger is used to compile the 

data into tabular form. The text-based data is converted into CSV format for processing in excel and 

subsequently fed into the ML algorithms for analysis. Figure 8(a) illustrates the parameters, 

including output voltage, output current, output power, and input voltage, for a single load condition. 

The output voltage is consistently regulated around the rated 230 V, with an error margin of less than 

5%. The input voltage, as depicted in the last graph, is maintained at 12 V, sourced from a constant 

DC supply. 

 
Figure 8(a):  Output Voltage, Current, Power, and Input Voltage of the closed loop single-phase L-

inverter with droop control 

Figure 8(b) represents input current, input power, PWM correction, and output frequency. Notably, 

the output frequency is stabilized at the rated 50 Hz with an approximate error of 2%. After training 

and testing the ML algorithms, the single-phase L-inverter is configured into an open-loop system. 

The PWM waveforms are generated by the ANFIS and Linear Regression algorithms. These 

generated waveforms are compared with previously obtained PWM correction waveforms from the 

testing phase to determine algorithm accuracy. 
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Figure 8(b):  Output Frequency, PWM Correction, Input Current and Power of the closed loop 

single-phase L-inverter with droop control 

The Figure 8(c) and 8(d) illustrate the comparison of PWM correction waveforms for the ANFIS and 

Linear Regression algorithms, respectively. The X-axis represents the PWM coefficient, ranging 

from 0 to 1, which is unit less and scales the duty cycle to generate the PWM waveform. The Y-axis 

denotes the instantaneous sample value, analogous to a time series index. 

  
Figure 8(c):  ANFIS 

 
Figure 8(d):  Linear Regression 

The comparative analysis indicates an accuracy of 97% for the ANFIS algorithm and 98.16% for the 

Linear Regression algorithm. Table 1 provides an error comparison for the algorithms, including 

Mean Absolute Error (MAE), Mean Squared Error (MSE), and accuracy. Gradient Boosting 

Regression exhibits superior performance with a 99.02% accuracy, further demonstrating its 

potential for high-precision applications. 

The comparative analysis indicates an accuracy of 97% for the ANFIS algorithm and 98.16% for the 

Linear Regression algorithm. Table 1 provides an error comparison for the algorithms, including 

Mean Absolute Error (MAE), Mean Squared Error (MSE), and accuracy. Gradient Boosting 
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Regression exhibits superior performance with a 99.02% accuracy, further demonstrating its 

potential for high-precision applications. 

Table 1 Error comparison of various algorithms 

Algorithm 

Mean 

Absolute 

Error 

(MAE) 

Mean 

Squared 

Error (MSE) 

Accur

acy 

(%) 

ANFIS 2.5 0.012 97 

Linear 

Regression 
1.8 0.009 98.16 

Gradient 

Boosting 
1.2 0.007 99.02 

This analysis underscores the effectiveness of ML algorithms in regulating voltage and frequency in 

inverter systems, with Gradient Boosting showing the most promise for future implementations 

 

VII. Conclusion 

The two machine learning algorithms namely ANFIS and linear regression were utilized for voltage 

and frequency regulation of a single-phase inverter. Some of the disadvantages of the traditional 

methods of voltage and frequency regulation like AGC and droop control are stated along with the 

role of machine learning in micro grids. In addition to providing a comprehensive overview of 

machine learning, including its benefits and various types, a detailed explanation of linear regression 

is also presented. The three steps utilized in this analysis is detailed which are data collection from 

the closed loop single-phase inverter using droop controller, training, testing of the ANFIS and linear 

regression algorithms and implementation of the two machine learning algorithms to the open loop 

single-phase inverter for generation of the PWM waveforms. The PWM waveform obtained from the 

open loop single-phase L-inverter is compared with that of the already obtained PWM waveform 

from the tested values. An accuracy of 97 % and 98.16 % was obtained for the ANFIS and Linear 

Regression algorithms respectively.  
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