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ABSTRACT 

Due to the widespread use of information and communication technology (ICT) applications in daily life, 

malicious software threats and their detection are becoming a more important sub domain of information 

security. The identification of all malware is one of the most difficult problems in the design and 

development of anti-malware systems. Dynamic analytic algorithms' development, which allows for quick 

detection of polymorphic and metamorphic malware, is crucial. We present a technique for detecting 

malicious code by analyzing run trace data using Long Short-Term Memory (LSTM) (LSTM). Malicious 

and benign Portable Executable (PE) files' execution traces were modeled. Beginning with run trace outputs 

gathered through dynamic analysis of PE files, we built our first dataset. With a dataset that includes both 

benign and harmful applications, the proposed method was shown to have an accuracy rate of more than 98 

percent after undertaking thorough testing. 
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INTRODUCTION 

Malware is software that has been created to do damaging actions including stealing confidential 

information, gaining root access, and incapacitating targeted computers. Meanwhile, a wide range of 

malware has emerged as a result of the Internet's and the software industry's fast expansion. The total amount 

of malware samples has increased by almost 34% over the last three quarters, reaching more than 774 

million samples. Malicious software (also known as malware) has been increasing over time. Hence, 

malware detection is a topic that is constantly intriguing and important. How to recognize malware has been 

the subject of extensive research. Because they have a limited ability to detect new threats, static signature-

based anti-viruses are frequently utilized to identify malware. New malware may easily avoid signature-

based security measures detection if it was encrypted, obfuscated, or packed to avoid detection. This 

detection method may be circumvented by zero-day malware. Analyzing a system in real-time In contrast to 

code obfuscation strategies, lurenjie17@mails.ucas.ac.cnis a more effective malware detection tool. A safe 

and regulated environment, such as a virtual machine, simulator, sandbox, etc., is often required for dynamic 

behavior-based malware detection approaches [4] [5]. In the next step, behavioral analysis is carried out 

utilizing information gathered from interactions with the environment, such as API calls and DLL calls. 

Though extensively explored, these methods are inefficient when used on big datasets [6]. It takes a lot of 

time and effort to safeguard the operating environment from being tainted by dynamic behavior-based 

malware detection approaches. Malware detection strategies that use machine learning have been presented 

in the last several years. A malware detection approach based on data mining was initially published in 

reference [7]. It uses three kinds of static features: the PE header, a text sequence, and a byte sequence to 

identify malware. Using n-grams instead of byte sequences, Kolter and Maloof [8] examined the 

performance of naïve Bayes, decision trees, and support vector machines for virus detection. An artificial 

neural network [9] was also employed for malware detection in the later years [9,10]. There are also new 

approaches to detecting malware. Malware may be detected using image processing in both [11] and [12]. 

However, the prior effort has been successful enough in terms of malware detection. Machine learning 

classifiers are trained by manually analyzing malicious code and comparing it to the characteristics extracted 

from the code itself. An innovative and efficient approach to identify whether a Windows executable file is 

mailto:lurenjie17@mails.ucas.ac.cnis


 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 51, Issue 8, August : 2022 
 

UGC CARE Group-1,                                                                                         156  

malware has been proposed in this research to lower the expense of artificial feature engineering. It is 

necessary to retrieve the executable files' assembly format file by disassembling them using IDA Pro first. 

To extract the opcode sequence from each assembly format file, we need an algorithm. Word embedding 

technique [13] and long-short term memory (LSTM) [14] are then utilized to understand the feature vector 

representation of opcode and to automatically learn opcode sequence patterns of malicious software. After 

the second LSTM layer, we add a mean-pooling layer to boost the local feature representation's invariance. 

We ran a series of tests on a dataset including 969 malicious files and 123 benign ones to see whether our 

strategy worked. MalwarearXiv:1906.04593v1 [cs.CR] 10 Jun 2019 detection performance is evaluated in 

the experimental phase, and comprehensive performance comparisons with other similar studies are 

performed. The assessment results reveal that our suggested technique can obtain an average AUC of 

0.99 for malware detection and an average AUC of 0.987 for malware classification. 

 

Literature survey: 

In contrast to Static analysis, malware analysis techniques based on Dynamic analysis are more resistant to 

obfuscation. Dynamic analysis was used to classify API requests that lasted less than five minutes in [1]. 

AUC, a quality metric, was computed using 170 samples and yielded a score of 0.96. Privately gathered 

samples of both benign and malicious software have been used to create a feed- forward network using API 

call feature sets. It performs well compared to previous methodologies, but it lacks research on the speed of 

execution, which is critical for real-time deployments. ESN and RNN tests were undertaken in [3] to learn 

malware's language. The ESNs performed better than RNNs in the majority of the studies. Experiments 

were undertaken in [4] to identify when to cease the virus execution about network traffic, as stated in [5]. 

Conventional procedures require 67 percent more time to complete than this approach. With API calls long 

sequences as features, the RNN and its version long short-term memory (LSTM) and CNN were used for 

malware classification in [6]. The main issue with the current approaches is that they need a lot of time to 

examine the behavior of the system during operation. It was used in [7] to classify malware using system call 

sequences as a CNN and RNN hybrid. SVM and the hidden Markov model had previously been used to 

acquire these system calls, but Dynamic analysis was employed to obtain them, and it was shown to be more 

effective (HMM). However, the biggest issue is the lack of discussion of the relevance of execution time in 

real-time virus detection. Using RNNs and two datasets, [13] proposes a technique. Additionally, they 

looked at the performance of several well-known classical machine learning classifiers. With a 5s execution 

time, they had claimed 94 percent accuracy. Static, dynamic, and hybrid analysis-based malware detection 

methods have been the subject of several investigations. HMM was used for both static and dynamic analysis 

of feature sets and a comparison of detection rates for a large number of malware types in [8]. In general, 

they found that Dynamic analysis had the best detection rate WindowsDynamic-Brain-Droid (WDBD) is a 

model we developed to compare and contrast several traditional machine learning algorithms (MLAs) and 

deep learning architectures to determine which technique is best for classifying Windows malware. The 

quantity of malware and benign samples in our datasets varies depending on the execution time, hence we 

make use of two separate datasets. 

 

Proposed work 

Long Short-Term Memory (LSTM) 

Long Shor-Term Memory (LSTM) is a specialized RNN architecture and the most im- important feature of 

this advanced architecture is solving the vanishing gradient problem or at least decreasing the effect of the 

vanishing gradient problem on training performance. Similar to RNN, nodes in an LSTM neural network 

get hidden states from the previous step. However, a common LSTM unit, node, has an improved 

structure compared to RNN, which is the main factor providing long-term memory by decreasing the effect 

of the vanishing gradient. 

A common LSTM unit gets an input value and generates an output value. During this operation, it uses two 
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values, including the generated output value of the current cell and the cell state value of the previous cell 

that will be explained in the following paragraphs, transferred by the previous step. An LSTM unit was 

designed to carry out the following three tasks. 

 Forget unwanted information in the current cell state through the forget gate 

 Add new information to the current cell state through the input gate 

 Create output of the current cell state through the output gate 

 
Fig-1: The interior design of a common LSTM cell [24] 

As seen in Fig-1, the inside of an average LSTM unit is simple and functional. It is possible to use a sigmoid 

function to generate an output that is between 0 and 1 on the left side of the cell bypassing the input from 

this current cell (Xt) and its output (ht1) to it from the previous cell (ht1). Afterward, this number, ft, is 

multiplied by the previous cell state, Ct1, to update and construct the currently displayed cell state. 

Essentially, the cell state is a value that travels across cells to transport information between them. This 

multiplication operation dictates which information will be forgotten and how much will be remembered in 

the next cells, and as a result, this section of the unit is referred to as the forget gate [26]. 

There are two sigmoid functions and one tan h function in the center of the cell, and their outputs are 

multiplied together. In this section, the sigmoid function is given the input of the current cell Xt as well as 

the output of the preceding cell ht1 as inputs for the second time. In contrast to the sigmoid function used in 

the forget gate, the output value of this sigmoid will be utilized to designate which value will be freshly 

added to the current cell state, as opposed to the sigmoid function used in the forget gate. The tan h function 

generates an array of potential values that may or may not be added to the current cell state in the future. The 

values that will be added to the current cell state are decided by multiplying the output of sigmoid it by the 

output of tan h C t. This is done by multiplying the output of sigmoid it by the output of tan h C t. The prior 

cell state Ct1 that was modified by the forget gate is updated again with the new information from the input 

with the assistance of the add operation, resulting in the creation of the final current cell state. As a result, 

this portion of the LSTM unit is referred to as the input gate [26]. 
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Algorithm 1: Algorithm for Mawere analysis 

input : run Trace Pool = {f1, f2, ..., fN } where 

N = 290 output: accuracy Rate, loss 

for f ∈ run Trace Pool do lines ← f .read Lines (); if f is malware then 

 
 

The sigmoid and the tan h functions, which are located on the right side of the cell, are used to indicate the 

output value of the current cell in the equation. This method obtains the most recent cell state, which may be 

referred to as the current cell state Ct, and uses it to generate an output value for the current cell that is 

between -1 and 1. A different approach is used by the sigmoid function, which generates an output Ot that 

will be used to determine which portions of the current cell state will be included in the output of the current 

cell ht. The output gate [26] is the name given to this section of the LSTM unit. 

Overall, the current LSTM cell receives the output and cell state of the previous cell in addition to the input 

of the current cell and creates the output of the current cell by updating the cell state of the previous cell 

When compared to the basic RNN architecture, the sequential internal design of the LSTM architecture 

provides for superior efficiency when dealing with data consisting of extended sequences of events. 

1. Results & discussion Dataset: 

The dataset (Drebin-215) also contains 215 functionalities from 15,036 app samples, of which 9476 were 

benign, and the remaining 5560 were malware samples from the Drebin project [4]. The dataset (Drebin-

215) also contains 215 features from 15,036 app specimens, of which 9476 were normal, and the residual 

5560 were malware data points. The Drebin samples are also freely accessible to the public and are 

extensively utilized in the scientific community. There are two datasets available for download in the 

supplemental material: Drebin-215 and Malgenome-215. 

 
Fig-2: Accuracy 

merged Malicious. Write 

File (lines); else 

merged Benign. Write File (lines); 

for l ∈ merged Malicious do sequences. value ← Append(l); sequences. label ← 

Append(0); 

/* "0" is used to label malicious sequences */ 

for l ∈ merged Benign do sequences. value ← Append(l); sequences. label ← Append(1); 

/* "1" is used to label benign 

sequences */ for s ∈ sequences do 

ts ← Tokenize(s); 

tokenized Sequences ← 

Append(ts); for ts ∈ 

tokenized Sequences do 

es ← Encode(ts); 

encoded Sequences ← 

Append(es); for es ∈ 

encoded Sequences do 

s ← Pad(es); 

padded Sequences ← Append(ps); 

(trainSet, testSet) ← Split(padded Sequences); (train Set, validation Set) ← Split(train 

Set); model.Train (train Set, validation Set); 

(accuracy Rate, loss) ← model.Test (test Set); 
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Classification Whenever we say "accuracy," we typically refer to the degree to which something is accurate. 

The ratio of correct predictions to the total number of input samples is a valuable indicator of accuracy in a 

forecasting model. 

 
Here fig-2 represents the accuracy of the classification of malevolent samples and benevolent samples. And 

the graph compares the existing ANN model and proposed LSTM model. ANN model fails to perform an 

accurate variety of harmful and harmless pieces. Because malicious code is a series of actions, performed and 

ANN fails to memorize code sequences. But the LSTM model contains a memory unit it can give improved 

accuracy while the quantity of epochs rises. At the same time, ANN fails to provide enhanced accuracy 

while the number of ages is enlarged. 

 
Fig-3: Precession 

Precision may be defined as the ratio of actual positives to all true positives and false positives. Precision 

examines the data to determine how many false positives were included in the mix. If there are no false 

positives (those FPs), the model's accuracy is 100 percent. The greater the number of FPs introduced into the 

mix, the more ugly that precision will seem. 

Precision = TP/(TP + FP) 

Here fig-3 represents the classification of malicious samples and benign samples precession. And the graph 

compares the existing ANN model and proposed LSTM model. ANN model fails to give a better precession 

classification of malicious and benign examples. Because malicious code is a series of actions, performed 

and ANN fails to memorize code sequences. But the LSTM model contains a memory unit it can give better 

precession while the number of epochs increases. At the same time, ANN fails to provide when the number 

of epochs increases. 

 
Fig-4: Recall 

It is calculated as the quantity of accurate optimistic findings separated by the total amount of appropriate 

samples. 

Precision = TP/(TP + FN) 

Here fig-4 represents recall for the classification of malicious samples and benign samples. And the graph 

compares the existing ANN model and proposed LSTM model. ANN model fails to give better recall of 

malicious and benign examples. Because malicious code is a series of actions, performed and ANN fails to 

memorize code sequences. But the LSTM model contains a memory unit that can give better recall while the 

number of epochs increases. At the same time, ANN fails to provide when the number of epochs increases. 
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Fig-5: RMSE 

In statistics, the standard deviation of the mistakes that occur when a prediction is made on a dataset is the 

RMSE. This is the same as MSE, except that the basis of the number is considered when evaluating the 

model's accuracy. 

Here fig-5 represents the classification RMSE of malicious samples and benign samples precession. The 

graph compares the existing ANN model and proposed LSTM model. ANN model gives an error value 

between 0.4 to 0.6, whereas LSTM produces a low RMSE value. Because malicious code is a series of 

actions, performed and ANN fails to memorize code sequences. But the LSTM model contains a memory 

unit that can give better performance while the number of epochs increases. At the same time, ANN fails to 

provide when the number of epochs increases. 

 
Fig-6: AUC 

The Area Under the Curve (AUC) measures a classifier's ability to differentiate between classes, and it is 

used as a summary of the Receiver Operating Characteristics (ROC) curve. The higher the AUC, the better 

the user sees the model's ability to differentiate between the positive and negative classifications. 

Here fig-6 represents AUC for the classification of malicious samples and benign samples. And the graph 

compares the existing ANN model and proposed LSTM model. ANN model fails to give better AUC of 

malicious and benign examples. Because malicious code is a series of actions, performed and ANN fails to 

memorize code sequences. But the LSTM model contains a memory unit that can give better AUC while the 

number of epochs increases. At the same time, ANN fails to provide when the number of epochs increases. 
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Fig-7: ROC 

A ROC curve shows the relationship between TPR and FPR at various categorization levels. Lowering the 

classification threshold causes more objects to be classified as positive, which increases the number of False 

Positives and True Positives in the system. 

Here fig-7 represents ROC for the classification of malicious samples and benign samples. And the graph 

compares the existing ANN model and proposed LSTM model. ANN model fails to give better ROC of 

malicious and benign examples. Because malicious code is a series of actions, performed and ANN fails to 

memorize code sequences. But the LSTM model contains a memory unit that can give better ROC while the 

number of epochs increases. At the same time, ANN fails to provide when the quantity of epochs rises. 

 

CONCLUSION 

Malware detection methods have been evolving since information systems became an important part of 

people’s life. The sheer growth of information technology requires faster and more efficient malware 

detection methods. Also, the anti-detection methods such as obfuscation techniques developed by malware 

authors increase the need for smart and fully automated malware detection methods. In the light of these 

needs, the advancements in artificial intelligence made AI-based methods the best candidate to develop 

better malware detection methods. In the first AI-based studies, machine learning (ML) classification 

algorithms were popularly used to classify the data obtained from malicious and benign software. However, 

ML classification algorithms do not provide fully automated methods since they require time and effort for 

feature selection and extraction. So, in the following studies, the focus was shifted from ML-based methods 

to deep learning (DL) based methods since deep neural networks simulated the learning process better and 

provided smarter and faster agents. Nowadays, deep neural network architectures, particularly convolutional 

neural networks (CNNs) and recurrent neural networks (RNNs), are widely employed in academic researches 

to classify malicious and benign software. In this study, we proposed an approach to classify malicious and 

benign code pieces. We worked on assembly language. Unlike other studies, we implemented our approach 

on dynamic analysis data instead of static analysis and focused on assembly code instead of focusing on just 

opcodes. With the deep learning architecture LSTM, which is a specialized RNN, we modeled malicious and 

benign software run traces like natural languages. Our proposed framework for the dynamic analysis of run 

trace data also makes the approach resistant to polymorphic and metamorphic malware. 
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