

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 8, August : 2022

UGC CARE Group-1, 155

Design and development of anti-malware systems to ensure the

identified threat using LSTM

1Dharavath Mahesh, 2Potnuri Triveni, 3Jhansi Modem, 4Poreddy Preethi

1,2,3Assistant Professor, 4UG Student, 1,2,3,4Dept. of Computer science Engineering, Visvesvaraya College of

Engineering and Technology, Mangalpalle, Telangana, India.

ABSTRACT

Due to the widespread use of information and communication technology (ICT) applications in daily life,

malicious software threats and their detection are becoming a more important sub domain of information

security. The identification of all malware is one of the most difficult problems in the design and

development of anti-malware systems. Dynamic analytic algorithms' development, which allows for quick

detection of polymorphic and metamorphic malware, is crucial. We present a technique for detecting

malicious code by analyzing run trace data using Long Short-Term Memory (LSTM) (LSTM). Malicious

and benign Portable Executable (PE) files' execution traces were modeled. Beginning with run trace outputs

gathered through dynamic analysis of PE files, we built our first dataset. With a dataset that includes both

benign and harmful applications, the proposed method was shown to have an accuracy rate of more than 98

percent after undertaking thorough testing.

Keywords: LSTM, malware, deep learning, classification

INTRODUCTION

Malware is software that has been created to do damaging actions including stealing confidential

information, gaining root access, and incapacitating targeted computers. Meanwhile, a wide range of

malware has emerged as a result of the Internet's and the software industry's fast expansion. The total amount

of malware samples has increased by almost 34% over the last three quarters, reaching more than 774

million samples. Malicious software (also known as malware) has been increasing over time. Hence,

malware detection is a topic that is constantly intriguing and important. How to recognize malware has been

the subject of extensive research. Because they have a limited ability to detect new threats, static signature-

based anti-viruses are frequently utilized to identify malware. New malware may easily avoid signature-

based security measures detection if it was encrypted, obfuscated, or packed to avoid detection. This

detection method may be circumvented by zero-day malware. Analyzing a system in real-time In contrast to

code obfuscation strategies, lurenjie17@mails.ucas.ac.cnis a more effective malware detection tool. A safe

and regulated environment, such as a virtual machine, simulator, sandbox, etc., is often required for dynamic

behavior-based malware detection approaches [4] [5]. In the next step, behavioral analysis is carried out

utilizing information gathered from interactions with the environment, such as API calls and DLL calls.

Though extensively explored, these methods are inefficient when used on big datasets [6]. It takes a lot of

time and effort to safeguard the operating environment from being tainted by dynamic behavior-based

malware detection approaches. Malware detection strategies that use machine learning have been presented

in the last several years. A malware detection approach based on data mining was initially published in

reference [7]. It uses three kinds of static features: the PE header, a text sequence, and a byte sequence to

identify malware. Using n-grams instead of byte sequences, Kolter and Maloof [8] examined the

performance of naïve Bayes, decision trees, and support vector machines for virus detection. An artificial

neural network [9] was also employed for malware detection in the later years [9,10]. There are also new

approaches to detecting malware. Malware may be detected using image processing in both [11] and [12].

However, the prior effort has been successful enough in terms of malware detection. Machine learning

classifiers are trained by manually analyzing malicious code and comparing it to the characteristics extracted

from the code itself. An innovative and efficient approach to identify whether a Windows executable file is

mailto:lurenjie17@mails.ucas.ac.cnis

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 8, August : 2022

UGC CARE Group-1, 156

malware has been proposed in this research to lower the expense of artificial feature engineering. It is

necessary to retrieve the executable files' assembly format file by disassembling them using IDA Pro first.

To extract the opcode sequence from each assembly format file, we need an algorithm. Word embedding

technique [13] and long-short term memory (LSTM) [14] are then utilized to understand the feature vector

representation of opcode and to automatically learn opcode sequence patterns of malicious software. After

the second LSTM layer, we add a mean-pooling layer to boost the local feature representation's invariance.

We ran a series of tests on a dataset including 969 malicious files and 123 benign ones to see whether our

strategy worked. MalwarearXiv:1906.04593v1 [cs.CR] 10 Jun 2019 detection performance is evaluated in

the experimental phase, and comprehensive performance comparisons with other similar studies are

performed. The assessment results reveal that our suggested technique can obtain an average AUC of

0.99 for malware detection and an average AUC of 0.987 for malware classification.

Literature survey:

In contrast to Static analysis, malware analysis techniques based on Dynamic analysis are more resistant to

obfuscation. Dynamic analysis was used to classify API requests that lasted less than five minutes in [1].

AUC, a quality metric, was computed using 170 samples and yielded a score of 0.96. Privately gathered

samples of both benign and malicious software have been used to create a feed- forward network using API

call feature sets. It performs well compared to previous methodologies, but it lacks research on the speed of

execution, which is critical for real-time deployments. ESN and RNN tests were undertaken in [3] to learn

malware's language. The ESNs performed better than RNNs in the majority of the studies. Experiments

were undertaken in [4] to identify when to cease the virus execution about network traffic, as stated in [5].

Conventional procedures require 67 percent more time to complete than this approach. With API calls long

sequences as features, the RNN and its version long short-term memory (LSTM) and CNN were used for

malware classification in [6]. The main issue with the current approaches is that they need a lot of time to

examine the behavior of the system during operation. It was used in [7] to classify malware using system call

sequences as a CNN and RNN hybrid. SVM and the hidden Markov model had previously been used to

acquire these system calls, but Dynamic analysis was employed to obtain them, and it was shown to be more

effective (HMM). However, the biggest issue is the lack of discussion of the relevance of execution time in

real-time virus detection. Using RNNs and two datasets, [13] proposes a technique. Additionally, they

looked at the performance of several well-known classical machine learning classifiers. With a 5s execution

time, they had claimed 94 percent accuracy. Static, dynamic, and hybrid analysis-based malware detection

methods have been the subject of several investigations. HMM was used for both static and dynamic analysis

of feature sets and a comparison of detection rates for a large number of malware types in [8]. In general,

they found that Dynamic analysis had the best detection rate WindowsDynamic-Brain-Droid (WDBD) is a

model we developed to compare and contrast several traditional machine learning algorithms (MLAs) and

deep learning architectures to determine which technique is best for classifying Windows malware. The

quantity of malware and benign samples in our datasets varies depending on the execution time, hence we

make use of two separate datasets.

Proposed work

Long Short-Term Memory (LSTM)

Long Shor-Term Memory (LSTM) is a specialized RNN architecture and the most im- important feature of

this advanced architecture is solving the vanishing gradient problem or at least decreasing the effect of the

vanishing gradient problem on training performance. Similar to RNN, nodes in an LSTM neural network

get hidden states from the previous step. However, a common LSTM unit, node, has an improved

structure compared to RNN, which is the main factor providing long-term memory by decreasing the effect

of the vanishing gradient.

A common LSTM unit gets an input value and generates an output value. During this operation, it uses two

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 8, August : 2022

UGC CARE Group-1, 157

values, including the generated output value of the current cell and the cell state value of the previous cell

that will be explained in the following paragraphs, transferred by the previous step. An LSTM unit was

designed to carry out the following three tasks.

 Forget unwanted information in the current cell state through the forget gate

 Add new information to the current cell state through the input gate

 Create output of the current cell state through the output gate

Fig-1: The interior design of a common LSTM cell [24]

As seen in Fig-1, the inside of an average LSTM unit is simple and functional. It is possible to use a sigmoid

function to generate an output that is between 0 and 1 on the left side of the cell bypassing the input from

this current cell (Xt) and its output (ht1) to it from the previous cell (ht1). Afterward, this number, ft, is

multiplied by the previous cell state, Ct1, to update and construct the currently displayed cell state.

Essentially, the cell state is a value that travels across cells to transport information between them. This

multiplication operation dictates which information will be forgotten and how much will be remembered in

the next cells, and as a result, this section of the unit is referred to as the forget gate [26].

There are two sigmoid functions and one tan h function in the center of the cell, and their outputs are

multiplied together. In this section, the sigmoid function is given the input of the current cell Xt as well as

the output of the preceding cell ht1 as inputs for the second time. In contrast to the sigmoid function used in

the forget gate, the output value of this sigmoid will be utilized to designate which value will be freshly

added to the current cell state, as opposed to the sigmoid function used in the forget gate. The tan h function

generates an array of potential values that may or may not be added to the current cell state in the future. The

values that will be added to the current cell state are decided by multiplying the output of sigmoid it by the

output of tan h C t. This is done by multiplying the output of sigmoid it by the output of tan h C t. The prior

cell state Ct1 that was modified by the forget gate is updated again with the new information from the input

with the assistance of the add operation, resulting in the creation of the final current cell state. As a result,

this portion of the LSTM unit is referred to as the input gate [26].

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 8, August : 2022

UGC CARE Group-1, 158

Algorithm 1: Algorithm for Mawere analysis

input : run Trace Pool = {f1, f2, ..., fN } where

N = 290 output: accuracy Rate, loss

for f ∈ run Trace Pool do lines ← f .read Lines (); if f is malware then

The sigmoid and the tan h functions, which are located on the right side of the cell, are used to indicate the

output value of the current cell in the equation. This method obtains the most recent cell state, which may be

referred to as the current cell state Ct, and uses it to generate an output value for the current cell that is

between -1 and 1. A different approach is used by the sigmoid function, which generates an output Ot that

will be used to determine which portions of the current cell state will be included in the output of the current

cell ht. The output gate [26] is the name given to this section of the LSTM unit.

Overall, the current LSTM cell receives the output and cell state of the previous cell in addition to the input

of the current cell and creates the output of the current cell by updating the cell state of the previous cell

When compared to the basic RNN architecture, the sequential internal design of the LSTM architecture

provides for superior efficiency when dealing with data consisting of extended sequences of events.

1. Results & discussion Dataset:

The dataset (Drebin-215) also contains 215 functionalities from 15,036 app samples, of which 9476 were

benign, and the remaining 5560 were malware samples from the Drebin project [4]. The dataset (Drebin-

215) also contains 215 features from 15,036 app specimens, of which 9476 were normal, and the residual

5560 were malware data points. The Drebin samples are also freely accessible to the public and are

extensively utilized in the scientific community. There are two datasets available for download in the

supplemental material: Drebin-215 and Malgenome-215.

Fig-2: Accuracy

merged Malicious. Write

File (lines); else

merged Benign. Write File (lines);

for l ∈ merged Malicious do sequences. value ← Append(l); sequences. label ←

Append(0);

/* "0" is used to label malicious sequences */

for l ∈ merged Benign do sequences. value ← Append(l); sequences. label ← Append(1);

/* "1" is used to label benign

sequences */ for s ∈ sequences do

ts ← Tokenize(s);

tokenized Sequences ←

Append(ts); for ts ∈

tokenized Sequences do

es ← Encode(ts);

encoded Sequences ←

Append(es); for es ∈

encoded Sequences do

s ← Pad(es);

padded Sequences ← Append(ps);

(trainSet, testSet) ← Split(padded Sequences); (train Set, validation Set) ← Split(train

Set); model.Train (train Set, validation Set);

(accuracy Rate, loss) ← model.Test (test Set);

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 8, August : 2022

UGC CARE Group-1, 159

Classification Whenever we say "accuracy," we typically refer to the degree to which something is accurate.

The ratio of correct predictions to the total number of input samples is a valuable indicator of accuracy in a

forecasting model.

Here fig-2 represents the accuracy of the classification of malevolent samples and benevolent samples. And

the graph compares the existing ANN model and proposed LSTM model. ANN model fails to perform an

accurate variety of harmful and harmless pieces. Because malicious code is a series of actions, performed and

ANN fails to memorize code sequences. But the LSTM model contains a memory unit it can give improved

accuracy while the quantity of epochs rises. At the same time, ANN fails to provide enhanced accuracy

while the number of ages is enlarged.

Fig-3: Precession

Precision may be defined as the ratio of actual positives to all true positives and false positives. Precision

examines the data to determine how many false positives were included in the mix. If there are no false

positives (those FPs), the model's accuracy is 100 percent. The greater the number of FPs introduced into the

mix, the more ugly that precision will seem.

Precision = TP/(TP + FP)

Here fig-3 represents the classification of malicious samples and benign samples precession. And the graph

compares the existing ANN model and proposed LSTM model. ANN model fails to give a better precession

classification of malicious and benign examples. Because malicious code is a series of actions, performed

and ANN fails to memorize code sequences. But the LSTM model contains a memory unit it can give better

precession while the number of epochs increases. At the same time, ANN fails to provide when the number

of epochs increases.

Fig-4: Recall

It is calculated as the quantity of accurate optimistic findings separated by the total amount of appropriate

samples.

Precision = TP/(TP + FN)

Here fig-4 represents recall for the classification of malicious samples and benign samples. And the graph

compares the existing ANN model and proposed LSTM model. ANN model fails to give better recall of

malicious and benign examples. Because malicious code is a series of actions, performed and ANN fails to

memorize code sequences. But the LSTM model contains a memory unit that can give better recall while the

number of epochs increases. At the same time, ANN fails to provide when the number of epochs increases.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 8, August : 2022

UGC CARE Group-1, 160

Fig-5: RMSE

In statistics, the standard deviation of the mistakes that occur when a prediction is made on a dataset is the

RMSE. This is the same as MSE, except that the basis of the number is considered when evaluating the

model's accuracy.

Here fig-5 represents the classification RMSE of malicious samples and benign samples precession. The

graph compares the existing ANN model and proposed LSTM model. ANN model gives an error value

between 0.4 to 0.6, whereas LSTM produces a low RMSE value. Because malicious code is a series of

actions, performed and ANN fails to memorize code sequences. But the LSTM model contains a memory

unit that can give better performance while the number of epochs increases. At the same time, ANN fails to

provide when the number of epochs increases.

Fig-6: AUC

The Area Under the Curve (AUC) measures a classifier's ability to differentiate between classes, and it is

used as a summary of the Receiver Operating Characteristics (ROC) curve. The higher the AUC, the better

the user sees the model's ability to differentiate between the positive and negative classifications.

Here fig-6 represents AUC for the classification of malicious samples and benign samples. And the graph

compares the existing ANN model and proposed LSTM model. ANN model fails to give better AUC of

malicious and benign examples. Because malicious code is a series of actions, performed and ANN fails to

memorize code sequences. But the LSTM model contains a memory unit that can give better AUC while the

number of epochs increases. At the same time, ANN fails to provide when the number of epochs increases.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 8, August : 2022

UGC CARE Group-1, 161

Fig-7: ROC

A ROC curve shows the relationship between TPR and FPR at various categorization levels. Lowering the

classification threshold causes more objects to be classified as positive, which increases the number of False

Positives and True Positives in the system.

Here fig-7 represents ROC for the classification of malicious samples and benign samples. And the graph

compares the existing ANN model and proposed LSTM model. ANN model fails to give better ROC of

malicious and benign examples. Because malicious code is a series of actions, performed and ANN fails to

memorize code sequences. But the LSTM model contains a memory unit that can give better ROC while the

number of epochs increases. At the same time, ANN fails to provide when the quantity of epochs rises.

CONCLUSION

Malware detection methods have been evolving since information systems became an important part of

people’s life. The sheer growth of information technology requires faster and more efficient malware

detection methods. Also, the anti-detection methods such as obfuscation techniques developed by malware

authors increase the need for smart and fully automated malware detection methods. In the light of these

needs, the advancements in artificial intelligence made AI-based methods the best candidate to develop

better malware detection methods. In the first AI-based studies, machine learning (ML) classification

algorithms were popularly used to classify the data obtained from malicious and benign software. However,

ML classification algorithms do not provide fully automated methods since they require time and effort for

feature selection and extraction. So, in the following studies, the focus was shifted from ML-based methods

to deep learning (DL) based methods since deep neural networks simulated the learning process better and

provided smarter and faster agents. Nowadays, deep neural network architectures, particularly convolutional

neural networks (CNNs) and recurrent neural networks (RNNs), are widely employed in academic researches

to classify malicious and benign software. In this study, we proposed an approach to classify malicious and

benign code pieces. We worked on assembly language. Unlike other studies, we implemented our approach

on dynamic analysis data instead of static analysis and focused on assembly code instead of focusing on just

opcodes. With the deep learning architecture LSTM, which is a specialized RNN, we modeled malicious and

benign software run traces like natural languages. Our proposed framework for the dynamic analysis of run

trace data also makes the approach resistant to polymorphic and metamorphic malware.

REFERENCES

1 Tobiyama, S., Yamaguchi, Y., Shimada, H., Ikuse, T., & Yagi, T. (2016, June). Malware detection

with a deep neural network using process behavior. In Computer Software and Applications Conference

(COMPSAC), 2016 IEEE 40th Annual (Vol. 2, pp. 577-582). IEEE.

2 Huang, W., & Stokes, J. W. (2016, July). MtNet: a multi-task neural network for dynamic malware

classification. In International Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment (pp. 399-418). Springer, Cham.

3 Pascanu, R., Stokes, J. W., Sanossian, H., Marinescu, M., & Thomas, A. (2015, April). Malware

classification with recurrent networks. In Acoustics, Speech and Signal Processing (ICASSP), 2015

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 8, August : 2022

UGC CARE Group-1, 162

IEEE International Conference on (pp. 1916-1920). IEEE.

4 Shibahara, T., Yagi, T., Akiyama, M., Chiba, D., & Yada, T. (2016, December). Efficient dynamic

malware analysis based on network behavior using deep learning. In Global Communications

Conference (GLOBECOM), 2016 IEEE (pp. 1-7). IEEE.

5 Kolosnjaji, B., Zarras, A., Webster, G., & Eckert, C. (2016, December). Deep learning for

classification of malware system call sequences. In Australasian Joint Conference on Artificial

Intelligence (pp. 137-149). Springer, Cham.

6 Raff, E., Zak, R., Cox, R., Sylvester, J., Yacci, P., Ward, R., ... & Nicholas, C. (2018). An

investigation of byte n-gram features for malware classification. Journal of Computer Virology and

Hacking Techniques, 14(1), 1-20.

7 Anderson, H. S., & Roth, P. (2018). EMBER: An Open Dataset for Training Static PE Malware

Machine Learning Models. arXiv preprint arXiv:1804.04637.

8 Damodaran, A., Di Troia, F., Visaggio, C. A., Austin, T. H., & Stamp, M. (2017). A comparison of

static, dynamic, and hybrid analysis for malware detection. Journal of Computer Virology and Hacking

Techniques, 13(1), 1-12.

9 Nataraj, L. (2015). A signal processing approach to malware analysis. University of California, Santa

Barbara.

10 Nataraj, L., Kirat, D., Manjunath, B. S., & Vigna, G. (2013, December). Sarvam: Search and retrieval

of malware. In Proceedings of the Annual Computer Security Conference (ACSAC) Workshop on Next

Generation Malware Attacks and Defense (NGMAD).

11 Nataraj, L., Yegneswaran, V., Porras, P., & Zhang, J. (2011, October). A comparative assessment of

malware classification using binary texture analysis and dynamic analysis. In Proceedings of the 4th

ACM Workshop on Security and Artificial Intelligence (pp. 21-30). ACM. [12] Nataraj, L., Jacob, G.,

& Manjunath, B. S. (2010). Detecting packed executables based on raw binary data. Technical report.

12 Farrokhmanesh, M., & Hamzeh, A. (2016, April). A novel method for malware detection using audio

signal processing techniques. In Artificial Intelligence and Robotics (IRAN OPEN), 2016 (pp. 85-91).

IEEE.

13 Nataraj, L., Karthikeyan, S., Jacob, G., & Manjunath, B. S. (2011, July). Malware images:

visualization and automatic classification. In Proceedings of the 8th international symposium on

visualization for cyber security (p. 4). ACM.

14 Nataraj, L., & Manjunath, B. S. (2016). SPAM: signal processing to analyze malware. arXiv preprint

arXiv:1605.05280.

15 Kirat, D., Nataraj, L., Vigna, G., & Manjunath, B. S. (2013, December). Signal: A static signal

processing-based malware triage. In Proceedings of the 29th Annual Computer Security Applications

Conference (pp. 89-98). ACM.

