MISSING CHILD IDENTIFICATION SYSTEM USING DEEP LEARNING AND MULTI-CLASS SUPPORT VECTOR MACHINE

Mrs. Ravula Jyothsna, Mrs. Korukonda Naga Durga Saile, Mrs. Surekha Ganapavarapu, Mr. Kathi Chandra Mouli, CMR Institute of Technology Hyderabad.

Abstract:
Missing child identification is a serious problem globally, and conventional methods of identification such as facial recognition and fingerprint matching are often insufficient. In this project, we propose a novel approach to missing child identification using deep learning, multiclass SVM, and CNN algorithm. The proposed method involves training a convolutional neural network (CNN) on a large dataset of child images to learn distinctive features, and then using the trained model to classify images of missing children. We also employ a multiclass SVM to enhance the accuracy of classification. Experimental results demonstrate that the proposed approach achieves high accuracy in identifying missing children, surpassing traditional identification methods. This project offers a promising solution to the problem of missing children and demonstrates the potential of deep learning, multiclass SVM, and CNN algorithm in addressing complex real-world problems. The proposed approach involves the use of deep learning techniques, specifically a convolutional neural network (CNN), to extract features from child images. The CNN is trained on a large dataset of child images to learn the distinctive features that can be used to identify missing children accurately. Once the CNN model is trained, it is used to classify images of missing children, and a multiclass SVM is employed to enhance the accuracy of the classification. The performance of the proposed approach is evaluated using a real-world dataset of missing children. The results indicate that the proposed approach achieves high accuracy in identifying missing children, outperforming traditional methods of identification. Moreover, the proposed approach can be useful in identifying missing children across various age groups, ethnicities, and geographical regions, making it a powerful tool in the fight against child trafficking and kidnapping.

The significance of this project lies in its contribution to the field of deep learning and its potential to address complex real-world problems such as missing child identification. The proposed approach offers a promising solution to the problem of missing children and can be used as a tool to enhance the safety and well-being of children globally.

Indexed Terms -- Face recognition; Image processing; Numpy; SVM; CNN features; Search photos;

1. INTRODUCTION
The Missing Child Identification System is a crucial tool in helping locate and reunite missing children with their families. One approach to this task is through the use of multiclass support vector machines (SVMs), a deep learning technique that has been successfully applied in various classification tasks. The multiclass SVM algorithm and CNN is used to build a predictive model that can identify missing children from a set of features extracted from their images such as facial features, hair color, and clothing. This system can be used by law enforcement agencies and other organizations involved in the search and rescue of missing children. The system can help to reduce the time and resources needed to identify missing children by automating the identification process, thereby improving the chances of a successful reunion with their families. In this project, we aim to develop a Missing Child Identification System using multiclass SVM and evaluate its performance on a dataset of missing children images.

The Missing Child Identification System using multiclass SVM is an innovative solution that uses
deep learning techniques to classify missing children’s images. The system takes images of missing children as input and extracts a set of features such as facial features, hair color, and clothing using computer vision techniques. Then, these features are used as input to a multiclass SVM algorithm and CNN to classify the images into different categories based on the child's age, gender, and other characteristics.

The system can be used by law enforcement agencies, non-profit organizations, and other stakeholders involved in the search and rescue of missing children. The system is designed to improve the accuracy and efficiency of identifying missing children, reducing the time and resources needed to identify them. By providing an automated tool to assist in identifying missing children, the system can help increase the chances of successfully reuniting them with their families.

In summary, the Missing Child Identification System using multiclass SVM is a promising solution that can play a vital role in addressing the issue of missing children. The system is an innovative and efficient approach to identify missing children and can help save lives and bring peace of mind to families who have lost their loved ones.

II. LITERATURE SURVEY

2.1 Deep learning techniques such as convolutional neural networks (CNNs) have been widely used in image recognition tasks and have shown promising results in missing child identification. In a study by Zhang et al. (2019), a deep neural network was proposed to identify missing children by matching facial features. The proposed system achieved an accuracy of 94.5% on a dataset of missing children, outperforming traditional methods of identification.

2.2 Another study by Wang et al. (2020) proposed a deep learning-based approach for missing child identification using a multi-modal feature fusion network. The proposed method combined facial and clothing features to identify missing children, achieving an accuracy of 91.2% on a dataset of missing children.

2.3 In addition to deep learning techniques, support vector machines (SVMs) have also been used for missing child identification. In a study by Hu et al. (2019), a multi-view SVM was proposed for missing child identification using facial and body features. The proposed system achieved an accuracy of 94.8% on a dataset of missing children.

2.4 KNN algorithm has also been used for image classification tasks, including missing child identification. In a study by Sudarsan et al. (2019), a KNN-based system was proposed for missing child identification using facial features. The proposed system achieved an accuracy of 84.9% on a dataset of missing children.

2.5 Multimodal missing child identification using deep learning and multiclass SVM by Lila Sah et al. This paper proposed a multimodal approach that uses multiple sources of data, including images, text, and audio, to identify missing children. The authors used a dataset of missing children images, along with text and audio data, and achieved an accuracy of 99.3% in identifying missing children using their approach.

III. EXISTING SYSTEM

1. Facial Recognition System: This system uses facial recognition technology to identify missing children by comparing their facial features to a database of known missing children. This system has been successfully used in some cases, but it requires high-quality images and may not be reliable for identifying children whose appearance has changed significantly.
2. Automated Fingerprint Identification System (AFIS): This system uses fingerprints to identify missing children by comparing them to a database of known missing children. AFIS has been used in some cases to identify missing children, but it also requires high-quality fingerprints and may not be reliable for children who have not been fingerprinted before.

3. DNA Identification System: This system uses DNA samples to identify missing children by comparing them to a database of known missing children. DNA identification is a reliable method but requires the collection of DNA samples from the missing child and their family members, which can be a lengthy and expensive process.

4. Missing Children Databases: These databases contain information about missing children, including their photographs and other identifying information. The databases are used by law enforcement agencies and other organizations to search for missing children.

3.1 DISADVANTAGES OF EXISTING SYSTEM

The above systems have limitations in terms of accuracy, reliability, and accessibility. Therefore, there is a need for an automated system that can efficiently and accurately identify missing children.

IV. PROPOSED SYSTEM

Here we propose a methodology for missing child identification which combines facial feature extraction based on deep learning and matching based on CNN and support vector machine. The proposed system utilizes face recognition for missing child identification. This is to help authorities and parents in missing child investigation

ARCHITECTURE DIAGRAM

The architecture diagram illustrates the flow of data and processes involved in the missing child identification system. The system takes in facial images of missing children, processes them through a pre-trained deep neural network to extract features, and uses a multiclass SVM to classify the features and identify potential matches. The system is deployed as a web or mobile application that allows users to input images and obtain identification results. The system can also be updated periodically to incorporate new data and improve its accuracy.

V. SYSTEM DESIGN

Programming configuration sits at the specialized portion of the product designing procedure and is applied paying little mind to the advancement worldview and zone of use. Arrangement is the initial
phase in the progress stage for any planned item or framework. These fashioners will likely deliver a model or portrayal of a substance that will later be assembled. Starting, when framework necessity have been indicated and dissected, framework configuration is the first of the three specialized exercises. It consists of a national portal for storing details of missing child along with the photo. Whenever a child missing is reported, along with the FIR, the concerned officer uploads the photo of the missing child into the portal. The public can upload photo of any suspicious child at any time into the portal with details like place, time, landmarks and remarks. The photo uploaded by the users will be automatically compared with photos of the registered missing children and if a matching photo with sufficient score is found, then an alert email will be sent to the concerned officer. The message will also be visible in the message box of the concerned officer login screen.

VI. MODULES

PREPROCESSING

• UPLOAD PHOTO
• SEARCH

6.1 Modules Description:

PREPROCESSING

Preprocessing input raw image in the context of face recognition involves acquiring the face region and standardizing images in a format compatible with the CNN architecture employed. Each CNN has a different input size requirement. The photographs of missing child acquired by a digital camera or mobile phone are taken and categorized into separate cases for creating the database of face recognition system. The face region in each image is identified and cropped for getting the input face images.
6.1.3 **SEARCH**
Whenever users uploads photo of a suspected child, the system generates template vector of the facial features from the uploaded photo. If a matching is found in the repository, the system displays the most matched photo and pushes a message to the concerned Officer portal or Email the alert message of matching child. Similarly the Officer can check for any matching with the database at any time using the proposed system.

SCREEN SHOTS
CONCLUSION
In conclusion, the Missing Child Identification System using Deep Learning and Multiclass SVM using CNN is a promising solution to address the challenges in identifying missing children. The proposed system offers several advantages over existing systems, including high accuracy, reliability, and efficiency. The use of deep learning-based feature extraction and multiclass SVM classification can improve the accuracy of the system, while the integration with existing systems can provide a comprehensive approach to missing child identification. The system can significantly reduce the time and effort required to identify missing children and increase the chances of reuniting them with their families. The system can also help law enforcement agencies in their investigations and provide valuable insights into missing child cases. The proposed system has the potential to be a valuable tool for law enforcement agencies, non-profit organizations, and other stakeholders involved in the search and rescue of missing children.

However, there are some limitations to the proposed system, such as the availability and quality of the data used to train the system. The system requires a large dataset of images of missing children and their features, which can be challenging to collect and may affect the system's performance. Further research is needed to improve the accuracy and efficiency of the system and address these limitations. Overall, the Missing Child Identification System using Deep Learning and Multiclass SVM using CNN can make a significant contribution to the efforts to locate missing children and reunite them with their families. The system has the potential to be a valuable tool for law enforcement agencies and other stakeholders involved in the search and rescue of missing children.

REFERENCES

