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ABSTRACT 

The de-Broglie-Bohm theory is assumed to the a viable relativistic description of quantum 

mechanics and a Hamilton-Jacobi (HJ) type equation is introduced for the Schrodinger equation. An 

appropriate covariant generalization of the model is sought and Klein-Gordon and Dirac equations 

discussed. It is pointed out that, as in the classical picture, the existence of the HJ equation implies 

localization of the particles in space, but they could be incorporated in an extended wave 

phenomenon. In close analogy with the concept of general theory of relativity the particle may be 

regarded as a singularity and the motion of the singularity gets reaction from the quantum potential 

entirely different from the potential of the ordinary forces.  
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1. Introduction  

The theory of quantum mechanics may be divided into two parts, (i) a formalism and (ii) an 

interpretation. The mathematical formalism of quantum mechanics has never been seriously 

challenged either theatrically or experimentally and remains as firmly established today as it 

was in the 1930’s. in contrast to this, there has been controversy surrounding  the 

interpretation of quantum mechanics since its original development1. Among many other, the 

two viable realistic descriptions of quantum mechanics are the many words interpretation and 

the de-Broglie-Bohm theory2. The object of the present talk is to provide a causal 

interpretation of the Klein-Gordon and Dirac equations in terms of the de-Broglie-Bohm 

theory and to discuss the precise way in which the quantum mechanical wave influences the 

evolution of the particle orbits. In the spirit of the seminar let us begin with a quote  from 

“The character of physical law” by Richard Feynmann and end up with that if one is working 

from the point of view of getting beauty in one’s equations, and if one has a really sound 

insight, one is on a sure line of progress”. Feynmann’s remark on QM is the following.  

 “There was a time when the newspapers said that only twelve men understood the 

theory of relativity. I do not believe there ever was such a time, on the other hand, I think it is 

safe to say no one understands quantum mechanics.” 

 The theory of relativity brought about important modifications in the specific forms in 

which the causal laws are expressed in physics but it did not go outside the previously 

existing theoretical scheme. On the other hand, the quantum theory had, from the point of 

view of a discussion of causality, an effect that was much more revolutionary than that of 

relativity. In the language of Bohr, ‘a radical revision of our attitude towards physical reality 

has been brought about by the quantum ideas’. Let us try to have a close look at the principal 

elements leading to such revision.  

i) The entities of matter and radiation usually exist in states which do not range over a 

continuous spectrum of possibilities. This quantization aspect in a long and varied list of 

experiments. 

ii) The matter and radiation are subject to a strange kind of wave-particle duality.  

iii) The quantum and the wave-particle concepts force a third fundamental conclusion, the 

so-called uncertainty principle.  

According to the uncertainty principle, an attempt to make a simultaneous measurement of 

where a particle is and where it is going can never be entirely successful. Thus we can  no 

longer imagine an electron or any other small particle following a definite trajectory because 
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no conceivable measurement can supply the simultaneous position and velocity information 

required to define that trajectory. 

  These are somewhat staggering concepts. They seem to raise more questions than 

they can possibly answer. How can anything be a particle and a wave at the same time? If 

waves are involved what kinds of waves are they? Waves of what? How can the idea of a 

particle motion make any sense if the particle has no trajectory? Why discard the trajectory 

concept? In the first palace just because it can not be measured? Whit these we tread on a 

very difficult ground, where the inadequacies of the conventional physical vocabulary 

become profoundly limiting and one takes recourse to a statistical method from the very 

beginning.  

  Many attempts have been made to construct an interpretation or a general conceptual 

basis for the equations of quantum physics. The efforts of Neils Bohr in this direction are 

particularly important. The equations of Einstein ad de-Broglie, 𝐸 = ℎ𝑣  and 𝑝 = ℎ/𝜆  

seriously disturbed Bohr since no observer ever finds a physical entity appearing as a particle 

and a wave at the same time. The contradictory wave and particle aspects of an electron 

actually appear at different times and in different kinds of experiments. Electrons as waves 

and as particles never appear in the same experiment. From the view point of physical 

observations, the only view point allowable in Physics, there is no contradiction. Waves and 

particles are mutually exclusive as they must be. On the other hand, wave and particle 

properties are both essential to a complete physical description. They are in Bohr’s 

terminology, ‘complementary’ aspects of a single entity such as an electron. The so called 

complementarity principle is a special logical system which sets out to rationalize the entire 

body of the quantum phenomena. For most physicists Bohr’s interpretation is acceptable. But 

there exists an impressive list of physicists, some of them attacking the duality doctrine and 

others attempting to climinate the statistical methods. Among the dissenters de Broglie and 

Bohm have sought an alternative interpretation of the quantum theory. This alternative 

interpretation helps us visualize each individual system as being in a precisely definable state, 

whose time evaluation is governed by a definite laws analogous to classical equations of 

motions (but not exactly equal to). They find that as with classical statistical mechanics, 

quantum mechanical probabilities may be regarded as only a practical necessity and not as a 

manifestation of the inherent lack of complete determinism at the quantumlevel.  

 

2. Schrodinger Equation: Causal Interpretation  

Let us first discuss the one-particle Schrodinger equation and later generalize it to  

the case of Klein-Gordon and Dirac equations. The one particle Schrӧdinger equation is  

           𝑖ħ
𝜕𝛹(𝑥⃗,𝑡)

𝜕𝑡
= − (

ħ2

2𝑚
) ∇2𝛹(𝑥⃗, 𝑡) + 𝑉(𝑥)𝛹(𝑥⃗, 𝑡) …………. (1) 

Madelung first recognized that Eq. (1) is equivalent to a coupled set of partial differential 

equations satisfied by two real functions 𝑅(𝑥⃗, 𝑡) by 

𝛹(𝑥⃗, 𝑡) = 𝑅(𝑥⃗, 𝑡)𝑒𝑥𝑝 (
𝑖

ħ
𝑆(𝑥⃗, 𝑡)). ………. (2) 

Let us introduce  

𝑃(𝑥⃗, 𝑡) = [𝑅(𝑥⃗, 𝑡)]2. ………. (3)  

To derive the physical significance of 𝑆(𝑥⃗, 𝑡) and 𝑃(𝑥⃗, 𝑡) let us write from Eqs. (1), (2) and 

(3).    

 

𝜕𝑃

𝜕𝑡
+ ∇⃗⃗⃗. (𝑃

∇⃗⃗⃗

𝑚
) = 0 … … … … … (4) 
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and 
𝜕𝑆

𝜕𝑡
+

(∇⃗⃗⃗𝑆)
2

2𝑚
+ 𝑉(𝑥⃗) −

ħ2

2𝑚
[

∇2𝑃

𝑃
−

1

2

(∇⃗⃗⃗𝑃)
2

𝑃2 ] = 0. ………. (5)  

In the classical limit ħ → 0 , the above equations are subject to very simple physical 

interpretation. The function  𝑆(𝑥⃗, 𝑡) is a solution of the Hamilton-Jacobi equation and 
∇𝑆(𝑥⃗,𝑡)

𝑚
 

is the velocity 𝑉⃗⃗(𝑥⃗), for any particle passing the point 𝑥⃗. Thus Eq. (4) can be written as   
𝜕𝑃

𝜕𝑡
+ ∇⃗⃗⃗. (𝑃∇⃗⃗⃗) = 0 … … … . (6) 

This indicates that it is consistent to regard 𝑃(𝑥⃗. 𝑡)as a probability density for practices in our 

ensemble and 𝑃∇⃗⃗⃗(𝑥⃗) as the corresponding mean current and Eq. (6) merely expresses the 

conservation of probability. 

 The usual statement in the causal interpretation is based on the modified Hamilton-

Jacobi (HJ) equation (5) characterized by the purely quantum mechanical potential  

𝑈(𝑥⃗, 𝑡) = −
ħ2

2𝑚
[
∇2𝑃

𝑃
−

1

2

(∇⃗⃗⃗𝑃)
2

𝑃2
] = −

ħ2

2𝑚

∇2𝑅

𝑅
  … … … … (7) 

The probabilistic element is thought to be a consequence of the lack of knowledge of the 

particle position and manifests itself in the presence of position probability density 𝑅2. The 

main novelty of the de Broglie-Bohm theory just described consists in the emergence in the 

dynamical equations of the quantum potential term, which guides non-classically the motion 

of the particle.  

 Besides the presence of the additional quantum potential, the (HJ) equation in (5) has 

some striking deviations from its classical counterpart.  

(i) In classical mechanics the Hamilton’s principal function W represents a generating 

function that produces canonical transformation to new variables (P, Q) such that all new 

momenta P are constants of the motion. A complete integral of the (HJ) equation is a function 

W (q, p, t) while in the quantum case the phase of the wave function which is supposed to 

play the role of W is 𝑆(𝑥⃗, 𝑡)  does not depend on any constant momenta. The classical 

trajectory obtained from  

𝑚𝑞𝑟 = 𝑝𝑟 =
𝜕𝑊(𝑞,𝑝⃗,𝑡)

𝜕𝑞𝑟
………….(8) 

Depends on the specific choice of the constant momenta P and initial position 𝑞𝑟(𝑡 = 0). In 

contrast, the quantum trajectory s calculated, in the causal interpretation, frorm  

𝑚𝑣⃗ = 𝑚𝑥⃗ = ∇⃗⃗⃗𝑆 ………. (9) 

It’s solution depends on the initial position 𝑥⃗(𝑡 = 0). 

(ii) The quantum potential can not be simply considered as any additional independent 

potential term in the (HJ) Eq. (5) because R (x, t) is always coupled to S(x, t) since only ħ =

𝑅 𝑒(𝑖/ħ)𝑆  satisfies the Schrödinger equation. In fact, this coupling of R and S fieldsat the 

origin is of the specific form of S(x, t) appearing in the quantum (HJ) equation because it is 

this specific form of S that satisfies simultaneously the continuity equation. De-Broglie called 

equation (9) as a guidance formula which represents the main point of departure from the 

corresponding geometrical optics approximation or the so-called Maupertuius principle.    

 

3. Relativistic Wave Equations  

With the above background we are now in a position to extrapolate the idea of causal 

interpretation to relativistic wave equations3. Schrödinger was well aware of the 

limitations of the classical. 𝐸 =
𝑝2

2𝑚
+ 𝑉, energy equation on which his equation is 

based. In fact, in his first attempts at the developmet of the wave equation, he 

recognized the principle of special relativity and started from the energy equation  
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(𝐸 − 𝑉)2 = 𝐶2𝑝2 + 𝑚0
2𝐶4 ………. (10)   

Where 𝑚0 is the electron rest mass. Transformation of Eq. (10) to a differential form 

with the operators 𝐸̂ = 𝑖ħ
𝜕

𝜕𝑡
 𝑎𝑛𝑑 𝑝̂2 = ħ2∇2, leads to  

(𝑖ħ
𝜕

𝜕𝑡
− 𝑉)

2

𝛹 = ħ2𝑐2∇2𝛹 + 𝑚0
2𝑐4𝛹  ……….. (11)] 

When equation (11) was applied to the case of hydrogen atom it produced 

inconsistent data and failed to reproduce experimental results. Schrödinger could find 

to interpretative scheme which made physical sense in all aspects of the equation. He 

lost faith in the equation’s usefulness and even abandoned the entire wave-mechanics 

project for several months. Finally, he came upon the non-relativistic wave equation 

which we have discussed so far. The relativistic wave equation (11) with a single 

component represents the quantum dynamical equation for spin zero particles. 

Naturally, this equation known as the Klein-Gordon equation developed peculiarities 

in predicting data for electronic atoms. A relativistic wave equation for spin half 

particle was invented in 1928 by Paul Dirac. Dirac’s ingeneous handling of the 

mathematical problem and his extra-ordanary faith in theoretical equations, even 

though they led hm to some practically unbelievable conclusions, make his theory an 

achievement that ranks with Schrödinger solving Eq. (10) Dirac wrote 

𝐸 − 𝑉 = ±𝐶√𝑝2 + 𝑚0
2𝑐2. …………. (12) 

Classical physics can make no sense of negative kinetic energy, but quantum physics 

admits negative values of the kinetic energy, consequently there is no reason to reject 

the negative sign in Eq. (12). We must be willing to accept two kinds of energies: they 

are conventionally called negative and positive energy states, referring to the negative 

and positive kinetic parts of the energy. From Eq. (12) the relativistic Hamiltonian  

𝐻 = 𝑉 ± 𝐶√𝑝2 + 𝑚0
2𝑐2  ……….. (13) 

This Hamiltonain must express the total energy in operator language. No useful 

operator can be fashioned directly from Eq. (13) with the familiar momentum 

operators such as 𝑝̂𝑥 = −𝑖ħ
𝜕

𝜕𝑡
, because the resulting Hamiltonian used in an energy 

eigenvalue equation such as 𝐻̂𝛹 − 𝐸𝛹 is decidedly nonlinear in the valuable 𝛹. Some 

device must be invented to make equation (13) linear. Dirac did his job for us with his 

creative mathematical talent of an exceptional genius. In Dirac’s theory 𝛹 wave of the 

electron is considered as a four component quantity Ψ𝑘(𝑘 = 1,2,3,4) and in order to 

be able to form linear combinations of Ψ𝑘 ,  four matrices of four rows and four 

columns each are introduced. As weknow the Dirac equation is given 

∑ 𝛾𝑡 (−𝑖ħ
𝜕

𝜕𝑥𝑡
+

𝑒

𝑐
𝐴𝑡) 𝛹𝑘 = −𝑖𝑚0𝐶 𝛹𝑘

4

𝑡=𝑙

(𝑘 = 1,2,3,4) … … … … (14)    

𝑚0 being the rest mass of the particle. The 𝑥𝑡 are the co-ordinates of the position four 

vector: 

𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥3 = 𝑧, 𝑥4 = 𝑖 𝑐𝑡. 
The 𝐴1 are the components of the potential four vector: 

𝐴1 = 𝐴𝑥 , 𝐴2 = 𝐴𝑦, 𝐴3 = 𝐴𝑧 , 𝐴4 = 𝑡𝑉. 

 Using Einstein’s summation convention we write Eq. (14) in the form  

𝛾𝑖 (−𝑖ħ
𝜕

𝜕𝑥𝑖
+

𝑒

𝑐
𝐴𝑖) 𝛹 = 𝑚0𝐶 𝛹 … … … … (15) 

 The (4 × 4) matrices 𝛾𝑖 satisfy the relation  

𝛾𝑖 𝛾𝑗 + 𝛾𝑗  𝛾𝑖 = 2𝛿𝑖 𝑗………….. (16) 
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4. Klein-Gordon Equation: Causal Interpretation 

Let us now proceed for the causal interpretation of Eqs. (11) and (16) which are the Klein-

Gordon (KG) and Dirac equations respectively.  

Consider the free particle Klein-Gordon equation,  

∇2𝛹 −
1

𝑐2

𝜕2𝛹

𝑐2𝜕 𝑡2
−

𝑚0
2𝑐2

ħ2
𝛹 = 0 … … … … … … (17) 

For our interpretation purpose this is no loss of generalization because the ‘quantum 

mechanical’ potential which causes a fundamental difference between 𝛹-field and other 

fields is generated from the functions in Eq. (2) by only the kinetic energy term of the 

Hamiltonian. From equations (2) and (17) together with 𝑃(𝑥⃗, 𝑡) = [𝑅(𝑥⃗, 𝑡)]2 

We get  

∇⃗⃗⃗. (𝑃 ∇⃗⃗⃗ 𝑆) −
1

𝑐2

𝜕

𝜕𝑡
(𝑃

𝜕𝑆

𝜕𝑡
) = 0   … … … … … (18) 

And  

(∇⃗⃗⃗ 𝑆)
2

−
1

𝑐2
(

𝜕𝑆

𝜕𝑡
)

2

+ 𝑚0
2𝑐2 − ħ2 [

∇2𝑅

𝑅
−

1

𝐶2

1

𝑅

𝜕2𝑅

𝜕 𝑡2
] = 0 … … … . (19) 

Note that the relativistic ‘quantum mechanical’ potential has a form    

𝑈(𝑥⃗, 𝑡) = −ħ2 [
∇2𝑅

𝑅
−

1

𝐶2

1

𝑅

𝜕2𝑅

𝜕𝑡2
] … … … … … . . (20) 

As expected the above results represent the relativistic generalization of the continuity 

equation and modified Hamilton-Jacobi equation given in Eqs. (4) and (5). The transition ot 

the limiting case of the non-relativistic classical mechanics is quite straight-forward. In the 

low velocity limit the relativistic Hamiltonian  

𝐻 = 𝐶(𝑝2 + 𝑚0
2𝑐2)

1
2 𝑔𝑜𝑒𝑠 𝑜𝑣𝑒𝑟 𝑡𝑜 

𝐻~𝑚0𝑐2 +
𝑝2

2𝑚0.
 … … … … … . (21) 

   Except for the rest energy 𝑚0𝑐2 , the result in Eq. (21) agrees with the classical non-

relativistic expression for the Hamiltonian. In-as-much as the action S is related to the energy 

𝐸 = −
𝜕𝑠

𝜕𝑡
, we can go from Eqs. (18) and (19) to the corresponding non-relativistic results by 

introducing a new action 𝑆 ’ according to the relation.   

𝑆 = 𝑆′ − 𝑚0𝑐2𝑡. … … … … … … . . (22) 

From  Eqs. (18) and (22) we get  

𝜕𝑃

𝜕𝑡
+ ∇⃗⃗⃗ (𝑃

∇⃗⃗⃗𝑆′

𝑚0
) −

1

𝑚0𝑐2
(

𝜕𝑃

𝜕𝑡

𝜕𝑆′

𝜕𝑡
+ 𝑃

𝜕2𝑆′

𝜕𝑡2
) = 0  … … … … … . (23) 

And  

𝜕𝑆′

𝜕𝑡
+

(∇⃗⃗⃗𝑆′)
2

2𝑚0
−

1

2𝑚0𝑐2
(

𝜕𝑆′

𝜕𝑡
)

2

−
ħ2

2𝑚0
[
∇2𝑅

𝑅
−

1

𝑐2

1

𝑅

𝜕2𝑅

𝜕𝑡2
] = 0. … … … … (24) 

In the non-relativistic  case 𝑐 → ∞  Eqs. (23) and (24) are in exact agreement  with Eqs. (4) 

and (5). This analysis  shows that except for relativistic modifications of the associated 

Hamilton-Jacobi equation and continuity equation, de Brogle-Bohm theory leads to physical 

interpretation of the Klein-Gordon equation, which is equation the density, and the guidance 

formula are  

𝜌 = 𝑃
𝜕𝑆

𝜕𝑡
 

𝑣⃗ = 𝑐2∇⃗⃗⃗𝑆/
𝜕𝑆

𝜕𝑡
… … … . (25) 
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If instead of a free particle, we considered a particle subjected to an electromagnetic field 

derivable from the potentials V and 𝐴 we would arrive at  

𝜌 = 𝑃 (
𝜕𝑆

𝜕𝑡
− 𝑒𝑉)  𝑎𝑛𝑑 𝑣⃗ = −𝑐2

∇⃗⃗⃗𝑆 +
𝑒
𝑐 𝐴

𝜕𝑆
𝜕𝑡

− 𝑒𝑉
… … … … … . (26) 

In this case the real function S would satisfy  

1

𝑐2
(

𝜕𝑆

𝜕𝑡
− 𝑒 𝑉)

2

− ∑ (
𝜕𝑠

𝜕𝑥
+

𝑒

𝑐
𝐴𝑥)

2

= 𝑚0
2𝑐2 + ħ2

⌷𝑅

𝑅
.

𝑥,𝑦,𝑧

… … … … . (27) 

Let us rewrite (27) as  

1

𝑐2
(

𝜕𝑠

𝜕𝑡
− 𝑒 𝑉)

2

− ∑ (
𝜕𝑠

𝜕𝑥
+

𝑒

𝑐
𝐴𝑥)

2

= 𝑀0
2𝑐2. … … … . (28)

𝑥,𝑦,𝑧

 

Where 𝑀0 is a variable rest mass given by  

𝑀0 = √𝑚0
2 +

ħ2

𝑐2
(

⌷𝑅

𝑅
) … … … … … (29) 

Appearance of the quantum potential in 𝑀0 was realized by de Broglie as follows.  

 “The existence of a Hamiltonian-Jocvobi equation implies that the particles are 

localized in space, as in the classical picture, but they would be incorporated in an extended 

wave phenomenon. The particle is subject to the action of forces exerted on it in the course of 

its trajectory. With general theory of Relativity de-Broglie regarded the particle as a 

singularity which serves as a centre of extended wave phcnomonon. The motion of the 

singularity gets reaction from the quantum potential entirely different from the povential of 

the ordinary forces. ”  

 It is to transcrive the (KG) equation’s result in the formalism of general theory of 

relativity. The wave equation is given by 

1

√−𝑔

𝜕

𝜕𝑥𝑘
[√−𝑔𝑔𝑘𝑙

𝜕𝛹

𝜕𝑥𝑘
] −

2𝑖

ħ
𝑃𝑘

𝜕𝛹

𝜕𝑥
+

1

ħ2
(𝑚0

2𝑐2 −
𝑒2

𝑐2
𝑝2) 𝛹 = 0 … … … … … (30) 

Where 𝑔𝑖𝑘 ‘s are t he classical coefficients of the metric of space time. 𝑔𝑖𝑘 ‘s are the 

corresponding contravarient component and 𝑔 = 𝑑𝑒𝑡(𝑔𝑢𝑘). 𝑃𝑘’s are the components of four 

vector potential, 𝑃2 = 𝑃𝑘𝑃𝑘 = 𝑉2 − 𝐴2 . The operator 
1

√−𝑔

𝜕

𝜕𝑘
[√−𝑔𝑔𝑘𝑙 𝜕

𝜕𝑥𝑙
]  is the 

generalization of the D’ Alembertian. In the tensor notation inftroduced above the modified 

Hamilton-D’Alemberitain. In the tensor notation introduced above the mdifed Hamiloton. 

Jocobi equatt9h (28) reads  

𝑔𝑘 𝑙 (
𝜕𝑠

𝜕𝑥𝑘
− 𝑒 𝑝𝑘) (

𝜕𝑠

𝜕𝑥𝑙
− 𝑒 𝑃𝑙) = 𝑚0

2𝑐2   … … … … . . (31) 

 In view of Eq. (31) the four vector velocity will be given by  

𝑀0 𝑐𝑢′ = 𝑔𝑘 𝑙 (
𝜕𝑠

𝜕𝑥𝑘
− 𝑒𝑃𝑥) … … … … … . . (32) 

Eq. (32) represents the general form of guidance formula.  

5. Dirac Equation: Casual Interpretation  

For a possible causal interpretation of the Dirac equation we shall first introduce the so called 

Gordon decomposition of the current density four vector 𝑗𝑡 of Dirac’s theory. Let us 

introduce 𝛹𝑘
+ = 𝛹𝑘

∗ 𝛾4 or symbolically𝛹+ = 𝛹∗𝛾4. The wave equation for 𝛹+ is 

(𝑖ħ
𝜕

𝜕𝑥𝑖
+

𝑒

𝑐
 𝐴𝑖) 𝛹+𝛾4 = −𝑖𝑚0𝑐 𝛹+. … … … … . . (33) 

From Eqs. (16) and (33) we have  
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𝜕

𝜕𝑥𝑖

(𝛹+𝛾𝑖𝛹) = 0 … … … … . . (34) 

Thus we write the current density four vector as  

𝑗𝑖 = 𝑖 𝑐 𝛹+ 𝛾𝑖 = 𝑖 𝑐 ∑ 𝛹𝑘
∗

4

𝑘=1
𝑙=1

(𝛾4𝛾𝑖)𝑘 𝑙𝛹𝑙⦁ … … … … … … . . (35) 

The first three components of 𝑗𝑖 are  

𝑗 = 𝑖 𝑐 𝛹∗𝛾𝛹⃗⃗⃗⃗ ⃗⃗ = −𝑐𝛹+𝛼𝛹⃗⃗⃗⃗⃗⃗⃗ … … … … ….  (36) 

Eq. (36) gives us the components of the particle current density along space axis while the 

fourth component  

𝜌 = ∑ 𝛹𝑘
∗𝛹𝑘 = ∑ │𝛹𝑘│2 … … … … . (38)

4

𝑘=𝑙

4

𝑘=𝑙

 

From eqs. (15), (16) and (33) we can derive  

𝑗𝑙 =
𝑖ħ

2 𝑚𝑣
(𝛹+

𝜕𝛹

𝜕𝑥𝑙
−

𝜕𝛹+

𝜕𝑥𝑙
𝛹) = −

𝑒

𝑚0 𝑐
 𝐴𝑙  𝛹+𝛹 −

𝑖ħ

2𝑚𝑜
∑

𝜕

𝜕𝑥𝑖

(𝛾+𝛾𝑖 𝛾𝑡 𝛹)

𝑖≠𝑡

… ..  (39) 

We can thus break up the four vector 𝑗𝑡 into two four vectors 𝑗𝑡
(1)

 and 𝑗𝑡
(2)

 defined by 

𝑗𝑡
(1)

=
𝑖ħ

2𝑚0
(𝛹+

𝜕𝛹

𝜕𝑥𝑡
−

𝜕𝛹+

𝜕𝑥𝑙
𝛹) −

𝑒

𝑚0𝑐
𝐴𝑙𝛹+𝛹 … … … . . (40) 

𝑗𝑡
(2)

= −
𝑖ħ

2𝑚0
∑

𝜕

𝜕𝑥𝑖

(𝛹+𝛾𝑖 𝛾𝑙 𝛹)

𝑖≠𝑙

… … … … (41) 

The decomposition of 𝑗𝑡 into  𝑗𝑡
(1)

 and 𝑗𝑡
(2)

goes by the name Gordon’s decomposition. 

Physically 𝑗𝑡
(1)

 arises from the overall motion (orbital) of the particle and 𝑗𝑡
(2)

 from the 

particle spin.  

 In the cases of Schrӧdinger and KG equations where we had a one component wave 

function it was sufficient to consider 𝛹(𝑥⃗, 𝑡) = 𝑅(𝑥⃗, 𝑡) 𝑒𝑥𝑝
𝑖

ħ
𝑆(𝑥⃗, 𝑡) but for  the Dirac 

equation we run into difficulties. For the four component 𝛹 in Dirac’s theory we have to 

write 

𝛹𝑘(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝑒𝑥𝑝 (
𝑖

ħ
𝑆𝑘(𝑥, 𝑦, 𝑧, 𝑡)) … … … … (42) 

It is not all clear that all 𝑆𝑘’s should be the same. However, Vigier4 has chosen to work with a 

common phase S(x, y, z, t) and arrived at a guidance formula by dealing with the overall 

current density four vector 𝑗𝑙.  

Substituting Eq. (42) in Eq. (39) we get  

𝑗𝑙 =
1

𝑚0
∑ (

𝜕𝑆𝑘

𝜕𝑥𝑙
+

𝑒

𝑐
𝐴𝑙) 𝑅𝑘

+𝑅𝑘 −
𝑖ħ

2𝑚0
∑

𝜕

𝜕𝑥𝑙

(𝑅𝑘
+𝛾𝑖𝛾𝑙𝑅𝑘) … … … . (43)

𝑖≠𝑙

4

𝑘=1

 

With 𝑅𝑘
+ = 𝑅𝑘𝛾4 

The motion of a particle may be defined by its four velocity. To make the guidance of the 

particle by the 𝛹 wave perfectly clear seems natural to make the 𝛹 wave follow one of the 

lines of the current defined by the 𝑗𝑙 vector, that is to put  

𝑢𝑖 = 𝐾𝑗𝑖+ … … … … … (44) 

But the four vector 𝑢𝑖 obeys the relation ∑ 𝑢𝑖
2 = −14

𝑖=𝑙 , from which we conclude  

𝐾 =
2

√− ∑ 𝑗𝑙
24

𝑖=𝑙

… … … … … … … . (45) 
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Vigier proposed to define the variable proper mass 𝑀0 of the particle by the formula  

𝑀0𝑐 𝑢𝑖 =
𝑚0𝑗𝑖

𝛹+𝛹
=

𝑚0𝑗𝑖

𝑅+𝑅
. … … … … … . (46) 

Thus  

𝑀0 =
𝑚0

𝑅+𝑅

𝑗𝑖

𝑐𝑢𝑖
=

𝑚0

𝑅+𝑅

1

𝑐
√− ∑ 𝑗𝑘

2

4

𝑘=1

… … … … … . (47) 

 The ‘𝑀0’ in  Eq. (47) is a generalization within the Dirac theory of the definition that we 

adopted in relativistic wave mechanics for a single component. To be more specific let us 

introduce  

(
𝜕𝑆̅

𝜕𝑥𝑗
) =

∑
𝜕𝑆
𝜕𝑥𝑗

𝑅𝑘
+𝑅𝑘

4
𝑘=1

∑ 𝑅𝑘
+𝑅𝑘

4
𝑘=1

… … … … (48) 

and  

𝑃𝑗 = −
𝑒

𝑐
𝐴𝑗 +

ħ
𝑖

∑ ∑
𝜕

𝜕𝑥𝑖
(𝑅𝑘

+𝛾𝑖𝛾𝑗𝑅𝑘)4
𝑘=1𝑖≠𝑗

∑ 𝑅𝑘
+4

𝑘=1 𝑅𝑘

 

= −
𝑒

𝑐
𝐴𝑗 +

𝑗𝑗
(2)

𝑅+𝑅
𝑚0 … … … . (49) 

From Eqs.(39), (44) and (49) we get  

𝑀0  𝑐𝑢𝑖 = −
𝜕𝑆

𝜕𝑥𝑖
+ 𝑃𝑖 = −

𝜕𝑆

𝜕𝑥𝑖
−

𝑒

𝑐
𝐴𝑖 + 𝑃𝑖

′ … … … … … . . (50) 

Equation (50) plays the role of the guidance formula in the Dirac’s theory. The influence of 

the spin on the motion is represented by the term 𝑃𝑖
′ proportional to 𝑗𝑙

2. 

 In order to move from the Dirac to the (KG) theory we must first neglect the effect of 

spin i.e. the term 𝑃𝑖
′ and assume that the 𝛹𝑘 reduce to single component 𝛹. 

 Adapting the tensor notation one then gets back the formula  

𝑀0 𝑐 𝑢𝑙 = 𝑔𝑘𝑙 (
𝜕𝑆

𝜕𝑥𝑘
− 𝑒𝑃𝑘) … … … … . (51) 

Further we note that for a spinless particle with a single component of  , 𝑗𝑙
(1)

 only survives 

and we have  

∑ 𝑗𝑙
(1)2

4

𝑖=1

=
𝑅4

𝑚0
2 ∑ (

𝜕𝑆

𝜕𝑥𝑖
−

𝑒

𝑐
𝐴𝑖)

2

… … … … … (52)

4

𝑖=1

 

Substituting Eq. (52) in Eq. (47) we find 

𝑀0
2 𝑐2 = − ∑ (

𝜕𝑆

𝜕𝑥𝑖
−

𝑒

𝑐
𝐴𝑖)

2

… … … … (53)

4

𝑖=𝑙

 

This is the relativistic Hamilton-Jacobi equation for the Klein-Gordon equation.  

6. We have considered here only body equation. Recently it has been shown how the causal 

interpretation of a spin half particle described by a Pauli Spinor may be extended to treat the 

two-body case5. All the degrees of freedom in the wave function have been interpreted in 

terms of interconnected Eucledian tensors generated by a direct product of Clifford algebras.  

To my knowledge the causal interpretation has not yet been extended to deal with the 

spin 1 and spin 3/2 particles. Admittedly, such a problem will be mathematically quite 

complicated but nevertheless interesting.  
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