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Abstract: This paper presents a novel Gesture-to-Command Conversion System tailored for 

individuals with physical challenges, using AI-based multimodal sensor gloves to enable seamless 

human-computer interaction. The system integrates flex sensors, inertial measurement units (IMUs), 

and pressure sensors within a lightweight wearable glove, capturing real-time finger movements, 

hand orientation, and grip strength. These sensor streams are processed through a multimodal data 

fusion layer and interpreted using a deep learning model trained on dynamic and static hand gestures. 

The architecture leverages a hybrid CNN-LSTM neural network, enabling both spatial and temporal 

analysis of gesture sequences with high accuracy and minimal latency. The recognized gestures are 

mapped to specific commands, facilitating control over smart devices, wheelchairs, and assistive 

communication interfaces. A feedback module provides haptic and visual confirmation to users, 

enhancing usability and confidence. The prototype was tested with a diverse user group including 

differently-abled individuals, achieving an average recognition accuracy of 96.2% across 20 

command classes. The glove operates wirelessly and is designed for low power consumption, 

making it suitable for extended daily use. This innovation offers a cost-effective, non-invasive, and 

intuitive solution for enhancing mobility and communication autonomy for the physically 

challenged, promoting greater independence and digital inclusion. Future development will include 

cloud-based customization of gesture libraries, integration with IoT-enabled smart environments, and 

real-time multilingual speech generation from gesture inputs. 
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1. Introduction 

The global push towards inclusive technologies has fostered a surge in research to assist individuals 

with physical disabilities, particularly in the realm of gesture-based human-computer interaction 

(HCI). Among these innovations, smart gloves have emerged as a promising solution, enabling 

natural and intuitive interfaces for assistive control, communication, and rehabilitation [1, 2]. 

Wearable gesture recognition systems embedded with multimodal sensors—such as flexible strain 

gauges, IMUs, and tactile arrays—enable the mapping of hand and finger gestures to digital 

commands, thereby enhancing autonomy and accessibility for differently-abled individuals [3, 4, 5]. 

Recent studies have demonstrated that combining sensor fusion techniques with AI and deep 

learning algorithms dramatically improves the accuracy and responsiveness of gesture recognition 

systems [6, 7]. Smart gloves equipped with piezoelectric and resistive sensors can detect minute 

variations in motion and pressure, offering real-time feedback and control over external devices such 

as wheelchairs, home automation systems, or digital assistants [8, 9]. Such capabilities are 

particularly crucial in contexts where conventional interfaces (like voice or touchscreens) may not be 

feasible due to speech impairments or limited mobility [10, 11]. Innovations like the WaveGlove, 

AcceleGlove, and E-glove have laid the foundation for dynamic gesture recognition using hybrid 
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deep neural networks such as CNN-LSTM and transformer-based models [12, 13, 14]. These 

architectures exploit both spatial and temporal features, enabling robust identification of dynamic 

gestures across users with varying hand anatomies or motor abilities [15, 16]. The incorporation of 

bioinspired materials, stretchable electronics, and machine learning-powered signal interpretation has 

significantly enhanced glove sensitivity and comfort, making them suitable for long-term daily usage 

[1, 3, 17]. 

 

Despite these advancements, several limitations persist. Many existing systems are bulky, cost-

intensive, or lack multimodal adaptability, restricting their usability in diverse physical and 

environmental conditions [18, 19]. Moreover, the lack of real-time bidirectional feedback—such as 

haptic vibration alerts or visual cues—reduces user confidence and interaction reliability [20, 21]. In 

addressing these gaps, our research proposes a cost-effective, wireless, AI-powered multimodal 

sensor glove tailored for individuals with physical disabilities. The system integrates flex sensors for 

finger movement, IMUs for gesture trajectory, and pressure sensors for tactile intent, offering 

enhanced control capabilities and usability in assistive domains [22, 23]. Unlike conventional models 

that rely solely on gesture classification, the proposed system incorporates a gesture-to-command 

conversion layer that dynamically translates recognized gestures into actionable commands in real-

time. This layer is trained using a hybrid CNN-LSTM model capable of interpreting both static and 

dynamic gestures with temporal continuity [6, 24]. To ensure inclusivity and adaptability, the glove 

architecture supports gesture customization, cloud-based retraining, and multilingual voice synthesis 

output, effectively bridging the gap between gesture and communication [25, 26]. 

 

The utility of such gloves extends beyond assistive technology for the physically challenged. Studies 

have shown applications in rehabilitation therapy, VR/AR interaction, robotic teleoperation, and 

educational tools for the deaf and visually impaired [27, 28]. Smart gloves like the BarkLoom and 

FibroLeaf have even explored the use of biodegradable and natural fiber-based sensors, supporting 

eco-sustainable development alongside accessibility [1, 2, 29]. The proposed research builds upon 

and extends prior work by combining material innovation, adaptive AI algorithms, and human-

centered design principles to deliver a highly sensitive, lightweight, and intuitive smart glove 

solution. The glove not only recognizes a wide range of gestures but also incorporates a real-time 

feedback system using haptics and LEDs, thereby improving error correction, confidence levels, and 

user satisfaction during operation [30]. 

 

Through detailed experimentation and evaluation, the system demonstrates above 96% accuracy in 

dynamic gesture recognition across diverse user demographics. This is a substantial improvement 

over earlier glove-based systems, many of which struggled with sensor drift, false positives, or 

limited command sets [3, 10, 14]. The system’s modular design, low-power architecture, and 

wireless capability make it ideal for wearable assistive applications in real-world scenarios, including 

mobility assistance, smart home control, and communication aids. In conclusion, as we strive toward 

digital inclusion and universal accessibility, intelligent wearable systems like AI-enabled multimodal 

sensor gloves stand at the forefront of transformative assistive technology. This research contributes 

to that vision by delivering a robust, flexible, and user-friendly gesture-to-command interface—

empowering individuals with physical challenges to engage more fully with their environments and 

digital tools. 

 

2. Methodology 

The development of the Gesture-to-Command Conversion System involved a sequence of design, 

integration, training, and testing steps that collectively enabled the translation of hand gestures into 
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real-time actionable digital commands. The entire methodology was centered on three major pillars: 

sensor glove design, data acquisition and fusion, and intelligent gesture recognition and command 

generation. 

2.1. System Architecture Design 

The overall architecture of the system comprised: A custom-built wearable glove embedded with 

flexible sensors. A microcontroller-based processing unit with wireless communication capability. A 

software layer for gesture interpretation and command conversion. A user feedback interface 

utilizing haptic and visual cues.  

The glove was designed using lightweight, breathable fabric to support long-duration wear. Five flex 

sensors were mounted along each finger to measure bending degrees. A 3-axis gyroscope and 

accelerometer (IMU) were placed on the dorsal palm side to capture hand orientation and movement 

dynamics. Additionally, capacitive pressure sensors were positioned at the fingertips to detect grip 

patterns and touch intensity.  

2. Sensor Integration and Data Fusion 

Each sensor component was individually calibrated for baseline drift and noise suppression using 

real-time averaging filters. The microcontroller unit (MCU) collected data from the sensors at a 

sampling rate of 60 Hz and transmitted it wirelessly via Bluetooth to a central processing system. 

The multimodal signals—comprising finger flexion data, hand orientation, and tactile pressure—

were synchronized and fused using a time-windowed feature extraction process. Each gesture was 

captured as a sequence of data frames, with features such as: Bending angle change rate, IMU-

derived angular velocity and orientation vectors, Pressure distribution patterns, These features were 

normalized and structured into a consistent input matrix to feed into the learning algorithm. 

3. Dataset Generation and Annotation 

A gesture dataset was developed using controlled trials. Ten volunteers, including individuals with 

varying levels of hand mobility, were asked to perform a predefined set of 20 gestures. Each gesture 

was recorded in multiple repetitions, producing a dataset of over 4000 annotated samples. Each 

gesture was labeled with a corresponding command class (e.g., “Turn On Light”, “Call Help”, 

“Move Forward”) to facilitate supervised learning. The dataset was manually reviewed to remove 

ambiguous or incomplete samples.  

4. Deep Learning Model for Gesture Recognition 

A hybrid deep learning model combining Convolutional Neural Networks (CNN) and Long Short-

Term Memory (LSTM) units was designed to learn both spatial features and temporal dynamics of 

gestures. CNN layers extracted invariant patterns across the sensor data dimensions. LSTM layers 

captured the sequence evolution of each gesture over time. The model architecture was as follows:  

Input: 60×9 matrix (60 time steps, 9 sensor features) 

CNN block: 2 layers with ReLU activation and max pooling 

LSTM block: 2 layers with dropout regularization 

Dense layers: Fully connected layers with softmax activation for multi-class classification 

The model was trained using a categorical cross-entropy loss function and optimized with the Adam 

optimizer. Training was conducted on a GPU-enabled system to accelerate convergence. 

5. Command Conversion and Feedback Mechanism 

Upon recognition, the identified gesture was immediately mapped to a predefined command. These 

commands were routed to control modules including smart home devices (lights, fans), mobility 

systems (wheelchairs), or communication outputs (text-to-speech interface). A real-time feedback 

system was implemented to provide confirmation to the user. Haptic motors embedded in the glove 

delivered short vibrations, while an RGB LED near the wrist displayed color-coded signals (e.g., 

green for success, red for error). This dual-mode feedback enhanced confidence and usability. 

6. System Testing and Evaluation 
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The complete system was evaluated under real-world conditions, including variable lighting, diverse 

user hand sizes, and different motion speeds. Performance metrics included: Gesture recognition 

accuracy, Response latency (gesture-to-command delay), User satisfaction and comfort (via survey), 

Each user was asked to perform a random sequence of commands, and the system's prediction and 

response were recorded for analysis. 

7. Ethical and Accessibility Considerations 

The study ensured that all participants were informed about the system's functionality and provided 

consent. The glove was designed with adaptability in mind, ensuring it could be worn by users with 

varying hand dimensions and motor abilities without discomfort or additional calibration. 

 

3. Performance Evaluation and Observations 

To understand the practical utility and operational efficiency of the proposed gesture-to-command 

system, a structured performance assessment was carried out involving both quantitative 

measurements and qualitative user feedback. The goal was to evaluate the accuracy, responsiveness, 

reliability, and user adaptability of the glove-based interface in real-world scenarios. 

 

Recognition Accuracy and Precision 

The system was assessed using a dataset containing 20 unique hand gestures, each associated with a 

specific command. A total of 10 participants, including individuals with physical mobility 

impairments, were involved in gesture demonstrations under controlled and semi-controlled 

environments. Each gesture was repeated 20 times by every user, generating 4000 data instances. 

 

The hybrid CNN-LSTM model achieved a mean classification accuracy of 96.2% across all gesture 

classes. The precision and recall rates were 95.8% and 96.5% respectively, indicating reliable gesture 

recognition without significant class imbalance. Notably, static gestures such as “stop” and “select” 

yielded accuracy above 98%, while dynamic gestures like “navigate left” or “volume down” showed 

slight reductions due to overlapping motion sequences. 

 

System Responsiveness and Latency 

The average delay between gesture completion and command execution was measured at 320 

milliseconds, well within the acceptable range for real-time assistive interaction. This low latency 

was achieved through optimized sensor polling intervals, on-glove preprocessing, and lightweight 

model inference. 

 

Further optimization of the Bluetooth transmission and feedback signaling enabled smooth, 

uninterrupted user experiences even during prolonged usage sessions. 

 

Robustness in Diverse Conditions 

Environmental robustness was validated by conducting evaluations in different settings, including 

brightly lit rooms, natural daylight, and dim conditions. The system maintained over 93% accuracy 

regardless of lighting, as the gesture recognition was sensor-based and not dependent on visual input. 

 

Glove performance was unaffected by moderate variations in hand sizes, thanks to the elastic 

structure and sensor calibration routines. Minor positional offsets were internally adjusted using 

reference zeroing during startup. 

 

User Experience and Feedback 
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Participants reported a high degree of satisfaction with the ease of use, minimal learning curve, and 

non-intrusive design of the glove. A post-evaluation survey using a 5-point Likert scale showed the 

following mean scores: 

Comfort while wearing: 4.7/5 

Ease of gesture execution: 4.5/5 

Confidence in feedback signals: 4.6/5 

Perceived responsiveness: 4.8/5 

Overall usefulness: 4.9/5 

Several users emphasized that the dual-mode feedback (haptic + visual) significantly enhanced their 

confidence during operation. In particular, users with limited finger strength appreciated the 

sensitivity and flexibility of the glove sensors. 

 

Operational Endurance 

The battery-backed microcontroller operated continuously for up to 6 hours on a full charge, meeting 

daily usage demands. The low-power consumption sensors and sleep-mode features contributed to 

the device's energy efficiency. 

No sensor drift or misclassification was observed after extended operation, confirming the long-term 

stability and reliability of the system. 

 

Noteworthy Observations 

Gesture Confusion: Minor confusion was observed between similar movement-based gestures such 

as “turn left” and “go back.” These were mitigated by re-tuning temporal filters in the model. 

Glove Fit Variability: Users with extremely small or large hands required minor strap adjustments. 

Future versions will include size variants and customizable inserts. Adaptive Learning: The glove's 

software framework supports cloud-based retraining, allowing personalized gesture libraries in the 

future. 

 

Conclusion 

The development of a gesture-to-command conversion system using AI-driven multimodal sensor 

gloves marks a significant advancement in assistive technology for individuals with physical 

challenges. This work successfully integrates flex sensors, inertial units, and pressure sensors within 

a wearable glove to capture comprehensive hand gestures with high precision. The fusion of these 

sensor inputs, interpreted through a hybrid deep learning model, enables reliable recognition of both 

static and dynamic gestures. 

Through rigorous performance evaluation, the system demonstrated strong accuracy, minimal 

latency, and adaptability across diverse users and environmental conditions. The embedded feedback 

system—comprising haptic vibrations and visual indicators—enhanced the interaction quality by 

confirming the execution of commands in real time. 

Importantly, the glove's wireless and ergonomic design, paired with its customizable command 

mappings, makes it suitable for a wide range of applications such as communication aids, mobility 

controllers, and smart home interfaces. The research not only addresses immediate functional needs 

but also introduces a scalable platform capable of evolving with the user's changing abilities. 

In summary, the system offers a non-invasive, affordable, and user-friendly solution that enhances 

the independence and dignity of physically challenged individuals, fostering their deeper integration 

into a digital and connected society. 

 

Future Scope 
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While the present work lays a strong foundation, several promising directions can be pursued to 

enhance functionality and accessibility: Adaptive Gesture Learning: Future iterations can incorporate 

continual learning capabilities, allowing users to create and train their own gesture sets. This would 

personalize the system to individual motion ranges and preferences. 

 

Speech Output Integration: Linking gesture recognition with multilingual speech synthesis modules 

could enable real-time communication for those with speech impairments, turning gestures into 

spoken language. IoT and Smart Environment Connectivity: Expanding compatibility with a broader 

array of smart devices—lighting, security systems, health monitors—would extend the system’s role 

in home automation and independent living. Cloud-Based Processing and Updates: Integrating cloud 

connectivity would allow model updates, remote support, and gesture sharing across users, creating a 

collaborative ecosystem. 

 

Miniaturization and Textile Integration: Embedding sensors directly into stretchable textile fibers 

and using flexible PCBs could improve comfort and appearance, enabling discreet and stylish usage. 

Cross-Platform Accessibility: Making the system compatible with mobile apps, assistive platforms, 

and operating systems would broaden its usage across devices and services. Rehabilitation and 

Monitoring: The glove could be extended for physical therapy, tracking motor recovery progress, 

and providing biofeedback to therapists and caregivers. Energy Harvesting Modules: Incorporating 

solar or kinetic energy harvesting could eliminate the need for frequent charging, making the system 

even more convenient 

 

References 

1. Zhu M. et al. Soft Modular Glove with Multimodal Sensing and Augmented Haptic Feedback 

Enabled by Materials’ Multifunctionalities, ACS Nano, 2022.  

2. Lu W.-x. et al. AI-Enabled Gesture-Language-Recognition Feedback System Using 

Strain-Sensor-Arrays-Based Smart Glove, Advanced Intelligent Systems, 2023.  

3. Wu X. et al. Ultra-Robust and Sensitive Flexible Strain Sensor for Real-Time and Wearable Sign 

Language Translation, Advanced Functional Materials, 2023.  

4. Lee C. et al. Digitizing Human Motion via Bending Sensors toward Humanoid Robot, Advanced 

Intelligent Systems, 2023.  

5. Zhou Y. et al. Differential Design in Homogenous Sensors for Kinesthetic Classification via ML, 

Applied Physics Reviews, 2023.  

6. Liu J. et al. HandSense: Piezoelectric Sensor Glove with Edge ML for Gesture & Object 

Recognition, Mob. Networks App., 2023. 

7. Luo J. et al. Machine-Learning-Empowered Gesture Recognition Glove, Eng. Proc., 2023.  

8. Gao Z. et al. Gesture-Recognition Glove Using Flexible Strain Sensors + Logit Adaboost, Eng. 

Proc., 2023.  

9. Kim S. et al. E-glove for Prosthetic Sensory Integration Using Stretchable Sensors & Soft 

Actuators, Sensors, 2024.  

10. Chen C. et al. Wearable Hand-Rehab Glove for Stroke Patients with Flex Sensors & Motor 

Assistance, Sensors, 2024. 

11. Hafidh R. et al. F-Glove: Sensory Substitution for Grip Force in Diabetic Patients, Sensors, 

2024.  

12. Demolder L. et al. Recent Advances in Wearable Sensing Gloves and Feedback Devices, Sensors, 

2024.  

13. Paterson D. et al. Instrumented Glove to Enhance Motor Learning via Sensory Feedback, 

Sensors, 2024. 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 54, Issue 8, No.2, August : 2025 
 

UGC CARE Group-1                                                                                                               131 
 

14. Sedighi P. et al. RFID-Based Assistive Glove for the Visually Impaired, arXiv preprint (peer 

reviewed), 2022.  

15. Ceolini E. et al. EMG-Vision Multimodal Fusion for Hand Gesture Classification, IEEE Sensors 

J., 2019.  

16. Králik M.; Šuppa M. WaveGlove: Transformer-based HGR Using IMUs, arXiv preprint, 2021.  

17. Shin J. et al. Review of HGR across Data Modalities, arXiv review, 2024.  

18. Dipietro L. et al. Survey of Glove-Based Systems, IEEE Trans. Syst., Man, Cybern. C, 2008.  

19. Hernandez-Rebollar J. L. et al. AcceleGlove: Whole-Hand Input Device for VR, ACM 

SIGGRAPH, 2002.  

20. Chouhan T. et al. Smart Glove with Gesture Recognition for Hearing/Speech Impaired, IEEE 

GHTC-SAS, 2014.  

21. Saleh N. et al. Smart Glove-based Gesture Recognition for Arabic Sign Language, ITCE Conf., 

2020.  

22. Jain S. et al. Smart Glove to Aid the Visually Impaired, ICCSP, 2019.  

23. Curic M.; Acosta J. Keyboard-Mouse Glove for the Physically Impaired, IFETC, 2019.  

24. Rewari H. et al. Automated Sign Language Interpreter Glove, IC3 Conf., 2018.  

25. Kasar M. S. et al. Smart Speaking Glove—Virtual Tongue for Deaf and Dumb, Int. J. Adv. Res. 

EEE, 2016. 

26. Muthiah M.; Natesh A.V. Low-Cost Smart Glove for IR-Device Control, IEEE ISTAS, 2016. 

27. Fang B. et al. Polymers for Conductive Fiber Strain Sensors in Data Gloves, Adv. Mater. 

Technol., 2016.  

28. Gollner U. et al. Mobile Lorm Glove for Deaf-Blind Communication, ACM TEI Conf., 2012. 

29. Caporusso N. Wearable Malossi Alphabet Interface, ACM AVI Conf., 2008.  

30. Fang B. et al. 3D Gesture Capturing Using IMMU-Based Data Glove, Neurocomputing, 2018.  


