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Abstract. The static stability of a rotating, non-uniform tapered beam subjected to axial excitation 

under a thermal gradient is investigated for both clamped–clamped and pinned–pinned boundary 

conditions. The equations of motion and corresponding boundary conditions are derived using the 

extended Hamilton’s principle. By applying the extended Galerkin method to the non-dimensionalized 

equations, a system of Hill’s equations is formulated. Static buckling loads are then determined from 

these equations. The study examines how various parameters including geometric configuration, 

thermal gradient, taper ratio, and rotational speed affect the buckling behavior of the beam. Numerical 

solutions and graphical results are obtained using a MATLAB-based computational code. The findings 

indicate that increased rotational speed and taper enhance stability, while a higher thermal gradient 

tends to reduce it, regardless of the boundary condition. 

Keywords. Static Stability, Galerkin method, Hamilton’s principle, taper parameter, temperature 

parameter. 

1. Introduction 

The stability analysis of rotating cantilever beams with axial orientation perpendicular to the spin axis 

holds significant practical relevance in mechanical engineering. Numerous engineering systems can 

be modeled as rotating cantilever beams, including turbomachinery and turbine blades, helicopter rotor 

blades, end mills and boring bars in machining operations, aircraft propellers, flexible spacecraft 

appendages, satellite antennas, and robotic manipulators. There has been many research on the stability 

analysis of uniform rotating beam [1-6]. On the other hand, the study on the stability of rotating beams 

with tapered cross-section have been carried out comparatively in the recent past. [7-15]. 

Vibrations of a rotating cantilever beam having uniform cross section with a tip mass was investigated 

by Bhat[1] using the Rayleigh-Ritz routine based on beam characteristic orthogonal polynomials. 

Unger and Brull[2] studied the parametric instability of a rotating shaft subjected to pulsating torque 

applied at the ends. The effect of spin speed and the hub radius of a rotating Euler beam on its vibration 

and buckling was studied by Bauer and Eidel[3]. Yang et al.[4] studied the dynamic modelling of a 

rotating Euler-Bernoulli beam using the extended Hamilton’s principle. Sinha[5] analyzed the transient 

vibration of a rotating beam subjected to an intermittent pulse load at the tip of the free end based on 

Timoshenko theory. Huang et.al.[6] studied the free vibration of rotating cantilever Euler beams at 

high angular velocity with solution based on power series method. 

Study of the literature reveals that very few work has been done on the stability analysis of rotating 

tapered beams. The vibration of a non-uniform rotating beam with a restrained base for different values 

of rotational speed was investigated by Liu and Yeh[7]. Kim et al.[8][9] developed and investigated 

the static failure of a tapered, filament wound rotating Timoshenko shaft about its axis under free 

vibration and under forced vibration respectively. Banerjee et al.[10] studied the free vibration of 
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rotating tapered Euler-Bernoulli beam having two cases of cross-sections viz., first: constant width and 

linearly varying depth, second: linearly varying width and depth. Akgöz and Civalek[11] investigated 

the free vibration of non-homogeneous tapered cantilever Euler Bernoulli micro beams for various 

taper ratios based modified coupled stress theory. The static stability and vibration of circularly tapered 

functionally graded material beam subjected to constant axial compressive force based on Euler 

Bernoulli beam theory have been studied by Mazzei Jr and Scott[12]. They considered linear, 

sinusoidal and exponential type of tapered beams. Shahba and Rajasekaran[13] studied the stability 

and vibration of tapered axially functionally graded Euler Bernoulli beams. The free vibration study 

of a rotating tapered Rayleigh beam was carried out by Banerjee and Jackson[14]. The divergence 

instability mechanism of a rotating Timoshenko beam with precone was studied by Lee et al.[15]. 

Khammer and Schlack[16] studied the effects of a non-constant angular velocity upon the vibration of 

a rotating Euler beam using Krylov–Bogoliubov–Mitropolsky (KBM) perturbation method. The 

stability analysis of a simply supported rotating shaft having asymmetric cross-section under a 

harmonic axial thrust and stochastic load was studied by Namachchivaya[17]. He referred 

approximated Markov model to deal with the stochastic part and followed Routh-Hurwitz criterion for 

the first and second moment stability. The stability analysis of a rotating Timoshenko beam with a 

flexible root under periodic axial force was investigated by Abbas[18] using finite element method. 

Ishida et al.[19] discussed the vibration and stability of a parametrically excited rotating shaft under 

sinusoidal axial force. Chen[20] investigated the parametric instability of a twisted Timoshenko beam 

acted upon by an axial pulsating force. Dash et.al.[21] studied the static instability of an asymmetric 

rotating sandwich beam under an axial pulsating load. Hybrid basis functions were derived for the 

finite element vibration analysis of high speed rotating tapered beams by Gunda et al.[22]. Banerjee 

and Kennedy[23] investigated the in-plane free vibration of rotating uniform Euler-Bernoulli beam 

using dynamic stiffness method and the influence of Coriolis effects, hub radius, rotational speed was 

studied. 

Very few research has been done on the stability of rotating beam under thermal gradient. Nayak 

et.al.[24] studied the static stability analysis of an asymmetric sandwich beam with thermal gradient 

subjected to an axial pulsating load. Librescu et.al.[25] investigated the stability of rotating turbo 

machinery blades operating in high temperature environment. However, no research is reported in the 

literature on the stability analysis of rotating tapered beam under thermal gradient. In current paper the 

governing differential equations of motion of a circularly tapered Euler-Bernoulli beam subjected to 

axial pulsating load has been derived with an effect of one dimensional temperature gradient along the 

central length of the beam. 

2. Formulation of the problem 

A rotating tapered cantilever beam of length l set off a distance 0C  from the axis of rotation and rotating 

at a uniform angular velocity    about a vertical z’-axis and is capable of oscillating in the x-z plane. 

The beam is oriented along the x-axis perpendicular to the axis of rotation as shown in Fig.1 below. A 

pulsating axial force 0 1( ) cosP t P P t= +  is applied at the end 0x C l= +  of the beam along the point 

of  C.G. of the cross-section in the axial direction, ω being the frequency of the applied load, t being 

the time and 0P  and 1P  being  respectively  the static and dynamic load amplitudes. The assumptions 

made for establishing the differential equations of motion are as follows: 

(a) The material of the beam is homogeneous & isotropic in nature. 

(b) The deflections of the beam are small and the transverse deflection ( ),w x t  is same for every points 

of a cross-sectional area. 
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(c) The beam obeys Euler-Bernoulli beam theory. 

(d) Extensional deflection of the beam is neglected. 

(e) A steady one-dimensional temperature gradient is assumed along the axial direction of the beam 

through the central line. 

(f) Extension and rotary inertia effects are negligible. 

 

Figure. 1. System Configuration 

The potential energy, kinetic energy and work done of the rotating beam are derived as under: 
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where, ( , )w x t   is transverse deflection of the beam. 

The application of the extended Hamilton’s principle gives the following equation of motion and 

boundary conditions  
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The boundary conditions at x = C0 and x = (C0+ l) are 

( ) ( ) ( ), , , 0xx x xE x I x w P t w+ =   ,  
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where, 
2 2
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w w w w
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= = = =
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Introducing dimensionless parameters 

0
0, , ,

Cx w
c ct

l l l
  = = = =  

( ) ( )

( )
2

4

E x I x
c

A x l
=    

The non-dimensional equation of motion and boundary conditions can be written as, 

( ) ( ) ( ) ( ) ( )2 2
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and, 
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2.1. Approximate Solution 

Approximate solution to the non-dimensional equations of motion are assumed as 

( ) ( ) ( )
1

,
N

r r
r

f     
=

=           (9) 

where, ( )rf   is an unknown function of time and ( )r   is a coordinate function to be so chosen as to 

satisfy as many of the boundary conditions in Eq. (4) as possible. It is further assumed that ( )r   can 

be represented by a set of functions (3) which satisfy the conditions obtained from Eq. (4) by deleting 

the terms containing ω0 and p(τ). It is further assumed that  

Table.1. The coordinate functions 

End 

Arrangement 
Coordinate Functions 1,2,....,i r=  

Pinned-Pinned ( ) ( )sin i   =  
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+ + +
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coordinate functions for the various boundary conditions can be approximated by the ones given in 

Table 1. 
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Substitution of the series of solutions in the non-dimensional equations of motion and subsequent 

application of the general Galerkin method[24] leads to the following matrix equations of motion: 

             0 1 cos 0M f K f p H p H f+ − − =      (10) 

The various matrix elements are given by 

( ) ( ) ( )
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'' '' ' 'i j g i j ijS T q r d K             + − =    

( ) ( )
1

0

' 'i j ijd H     =   

, 1,2,...........,i j N=
 

2.2. Static Buckling Loads 

Substitution of p1 =0 and    0f =  in Eq. (10) leads to the eigenvalue problem       
1

0

1
K H f f

p

−
=

. The static buckling loads for the first few modes are obtained as the reciprocals of the eigenvalues of 

   
1

K H
−

 using MATLAB R2013a reference guide, version 8.1.0.604, 15 February 2013. 

3. Numerical Results and Discussions 

Numerical results were obtained for various values of the parameters like rotation parameter, geometric 

parameter, taper parameter and thermal gradient. The linearly tapered cantilever beam with a circular 

cross-section is assumed to have a diameter varying according to the relation 

    

(a) For c0=0 & 1, with δ=0.1, α*=2      (b) For α*=1 & 2, with Ω0=5 

Figure.2. Variation of static buckling loads of pinned-pinned beam at first three modes 
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(a) For c0=0 & 1, with δ=0.1, α*=2      (b) For α*=1 & 2, with Ω0=5 

Figure.3. Variation of static buckling loads of clamped-clamped beam at first three modes 

( )1( ) 1 1d d   = + −   

where, d1 is the diameter of the beam at the end 1 =  and *  is the diameter taper parameter. 

Consequently, the mass distribution ( )m   and the moment of inertia distribution ( )S  are given by 

the relations 

( ) ( )
2

1 1m    = + −   

( ) ( )
4

1 1S    = + −   

The temperature above the reference temperature at any point   from the end of the beam is assumed 

to be ( )0 1  = − . Choosing  1 =  , the temperature at the end 1 =  as the reference temperature, 

the variation of modulus of elasticity of the beam is denoted by 

( ) ( ) ( )1 1 11 1E E E T   = − − =   , 10 1   

    

(a) Effect of Ω0, with δ=0.1, α*=2      (b) Effect of δ, with Ω0=5 

Figure.4. Variation of static buckling loads of guided-pinned beam at first three modes 
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(a) Effect of Ω0, with δ=0.1, α*=2      (b) Effect of δ, with Ω0=5 

Figure.5. Variation of static buckling loads of clamped-pinned beam at first three modes 

where,   is the coefficient of thermal expansion of the beam material, 1 = is the thermal gradient 

parameter and  

( ) ( )1 1T   = − −    

where, δ is the thermal gradient along the length of the beam. 

The static stability analysis of the system for various boundary conditions has been analyzed as 

follows: 

The static stability of the system has been analyzed and are presented as functions of rotational speed 

parameter 0  for two different values of the hub radius 0c  in Figs. 2(a), 3(a), 4(a), 5(a), 6(a) and 7(a) 

for boundary conditions of pinned-pinned, clamped-clamped, guided-pinned, clamped-pinned, 

clamped-CUR and clamped-free respectively. The figures show the effect of rotational speed on the 

static buckling loads of the first three modes of a beam for 0 0c =  and 0 1c = . It is found that with 

0 0c = , while the buckling loads of the first mode of a rotating beam having combinations of clamped, 

guided and pinned ends (except guided-pinned) increase with increase in the value of 0 to reach a 

maximum and then decrease, those of the third mode increase monotonically with 0 in the range of 

values considered. 

Further, the behavior of the buckling load characteristic of the second mode for clamped-clamped 

condition is analogous to that of the first mode, whereas, for pinned-pinned and clamped-pinned cases, 

it is similar to that of the third mode. For 0 1c = , the buckling loads of all the modes decrease with 

increase in rotational speed beyond a certain optimum value so as to attain or tend to attain the value 

zero. For the aforementioned boundary conditions, the buckling load for 0 1c = may be either higher or 

lower than that for 0 0c = , depending on the rotational speed. Moreover, the rotational speed at which 

the buckling load attains zero value decreases with increase in the hub radius. On the other hand, the 

buckling loads of all the three modes of beams having a free end at ( )01 c = +  increase with increase 

in both 0  and 0c . 
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(a) Effect of Ω0, with δ=0.1, α*=2      (b) Effect of δ, with Ω0=5 

Figure.6. Variation of static buckling loads of clamped-CUR beam at first three modes 

    

(a) Effect of Ω0, with δ=0.1, α*=2      (b) Effect of δ, with Ω0=5 

Figure.7. Variation of static buckling loads of clamped-free beam at first three modes 

In Figs. 2(a), 3(a), 5(a) and 6(a) the static buckling loads have a greater value for higher modes with 

0 0c = and for 0 1c =  it increases up to certain range of rotational speed parameter and then decreases. 

Figures 4(a) and 7(a) show little difference from the other four boundary conditions. For the first case 

static buckling loads show equal values for both the values of 0c  for higher modes and for first mode 

it is having a constant value over considered range of 0 for 0 0c = and very poor values for 0 1c = . 

For the second case, static buckling loads increases monotonically for both 0 0c = and 0 1c = for all the 

three modes. 

Figures 2(b), 3(b), 4(b), 5(b), 6(b) and 7(b) show the variations of static buckling loads of the first 

three modes as a function of the thermal gradient parameter δ for the two different combinations of the 

taper parameter α*. It has been observed that for a given tapered beam, the value of static buckling load 

decrease monotonically with increase in the value of δ, the rate of decrease being greater for higher 

modes. Whereas, at any value of δ, the static buckling loads record slightly larger changes in higher 

modes with an increase in the value of the taper parameter. 

In the first mode, static buckling loads have nearly equal values for both the values of taper parameter 

for all cases. For higher modes, the values of static buckling loads are higher for third mode than 

second mode and vary linearly towards lower value with the increase in thermal gradient. 

4. Conclusion 
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In this paper a computational analysis of the static stability of a tapered cantilever beam with axial load 

and thermal gradient under pinned-pinned & clamped-clamped boundary conditions are considered. 

The programming has been developed by in MATLAB environment. The following are the 

conclusions drawn from the study. 

The static stability of a rotating tapered beam under a pulsating axial load is investigated for possible 

combinations of clamped, guided, pinned and free boundary conditions. It is observed that beam with 

clamped-free condition becomes statically stable. Beams with the other end conditions may either 

stabilize or destabilize with increase in rotational speed and hub radius. Increase in taper parameter 

increases the static buckling loads. However, increase in thermal gradient reduces the static buckling 

loads. Thus, it may be inferred that increasing taper have stabilizing effects on the beams, whereas 

increasing temperature gradient have a destabilizing effect on the beams for both the cases. 
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