

ISSN: 0970-2555

Volume : 54, Issue 4, No.3, April : 2025

INTELLIGENT FAULT DIAGNOSIS IN TRANSMISSION LINES USING DEEP NEURAL NETWORKS: A REVIEW AND RESEARCH INSIGHTS

Abhishek Santosh Devrukhakar, M. Tech Research Scholar, Electrical Engineering,
 Dr. Babasaheb Ambedkar Technological University, Lonere, Raigad, Maharashtra, India,
 Prof. M.F.A.R. Satarkar, Associate Professor, Department of Electrical Engineering, Dr.
 Babasaheb Ambedkar Technological University, Lonere, Raigad, Maharashtra, India.

ABSTRACT:

The growing complexity and susceptibility of contemporary power systems require rapid, precise, and intelligent approaches for fault classification and localisation in transmission lines. Conventional shallow learning techniques frequently inadequately address nonlinearities, high-dimensional data, and dynamic operational conditions. Recently, Deep Neural Networks (DNNs) have proven to be effective instruments for learning complex patterns from both raw and processed electrical signals, facilitating reliable fault diagnosis. This review provides an analysis of advanced deep neural network approaches, including convolutional neural networks, long short-term memory networks, hybrid models, and emerging transformer-based architectures, specifically focused on fault classification and localisation in transmission systems. This study presents a new taxonomy for categorising the literature according to DNN architecture, input feature type, application objective, and system environment. The findings indicate that DNNs exhibit enhanced classification accuracy, adaptability in real-time, and generalisation across various fault scenarios. However, they also underscore ongoing issues, including data scarcity, interpretability, and constraints related to realworld deployment. This review identifies research gaps and future opportunities, including explainable AI, edge computing integration, and transfer learning, to guide researchers and practitioners in developing resilient, data-driven protection frameworks for next-generation smart grids.

Keywords: Fault Location Estimation, Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), Data-Driven Protection Systems, Machine Learning in Power Systems, Intelligent Fault Localization

INTRODUCTION:

Transmission lines are critical for the long-distance transport of electricity; however, their susceptibility to environmental factors and ageing infrastructure renders them prone to faults. Faults, including short circuits and external disturbances, can compromise the reliability of power systems, leading to outages and equipment damage. Therefore, rapid and accurate fault classification and localisation are essential for ensuring system stability. Conventional fault detection methods, including impedance-based relays and travelling wave techniques, have been extensively utilised; however, they encounter challenges in addressing the complexities of modern grids, especially regarding high-impedance faults and the integration of renewable energy sources. In response, machine learning models such as decision trees and shallow neural networks provide more adaptive solutions. These models frequently encounter difficulties when dealing with high-dimensional, noisy data and exhibit limited generalisation capabilities. The emergence of deep learning, particularly Deep Neural Networks (DNNs), has significantly altered fault diagnosis in transmission systems. Architectures like Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks demonstrate proficiency in learning spatial and temporal patterns from raw electrical signals, providing enhanced accuracy, noise resilience, and adaptability. Moreover, hybrid deep learning models and image-based techniques are advancing fault detection towards enhanced automation and intelligence. Despite these advancements, challenges persist, including substantial computational demands, absence of standardised datasets, and restricted model interpretability,

ISSN: 0970-2555

Volume : 54, Issue 4, No.3, April : 2025

which impede practical, real-time implementation. A thorough review of deep learning applications in this domain is essential.

This review fulfils the requirement by providing a comprehensive analysis of recent DNN-based methods for fault classification and localisation in transmission lines. This work presents a novel taxonomy that classifies existing literature based on architecture, input type, signal processing techniques, and application context. The review addresses performance benchmarks, implementation challenges, and emerging trends such as explainable AI, edge computing, and transfer learning, providing insights for future enhancements in power system protection and resilience.

BASICS OF FAULTS IN TRANSMISSION LINES:

Transmission lines are the main long-distance electrical connections. Their outdoor placement and wide coverage across diverse terrains make them prone to faults. Power systems can be severely impacted by these faults. Therefore, understanding transmission line fault types, causes, and effects is crucial, highlighting the importance of advanced diagnostic tools like Deep Neural Networks (DNNs) for effective monitoring and protection.

Fault Classification: :

Two main types of transmission line faults are symmetrical vs. asymmetrical and series vs. shunt. Three-phase (L-L-L) or three-phase-to-ground (L-L-G) symmetrical faults involve all three phases equally. These rare events are the most dangerous because they generate high fault currents and threaten system stability. Asymmetrical faults, which involve phase imbalance, are more common. Unbalanced system conditions caused by single, line-to-line, and double line-to-ground (L-L-G) faults disrupt power transmission by causing voltage and current fluctuations.

Circuit characteristics classify faults as shunt or series. Short circuits between conductors or to ground cause the most common shunt faults, which increase current flow and voltage drops. They can damage equipment and destabilise systems. Series or open conductor faults occur when one or more conductors break without shorting. Though rare, they are harder to detect and can go undetected, compromising system safety and performance. Understanding these fault types is crucial for accurate detection, classification, and response, especially when using intelligent systems like Deep Neural Networks for power system protection.

Category	Sub-Type	Description
Based on	Symmetrical	Three-phase faults (e.g., ABC, ABC-G) involving all
Connection	Faults	phases equally.
	Asymmetrical	Single-line-to-ground (L-G), line-to-line (L-L), double-
	Faults	line-to-ground (LL-G).
Based on Nature	Series Faults	Open conductor or broken conductor faults.
	Shunt Faults	Short-circuit faults (phase-to-ground or phase-to-phase).

 Table 1: Types of Transmission Line Faults

Real-World Causes of Faults:

Many environmental, technical, and human factors can cause gearbox line faults, disrupting system stability and operations. Weather conditions like lightning, strong winds, snow, ice, and storms cause temporary and permanent faults. Old or damaged insulators can cause insulation failures and breakdowns. Safety is also threatened by trees, birds, animals, vandalism, and accidents. Dust, salt, and pollution can also conduct electricity on insulators, reducing their effectiveness. Age, wear, and poor maintenance increase equipment failure risk. This variety of causes causes different fault behaviours, complicating detection and diagnosis.

Impact on Power System Reliability:

Transmission line failures can affect the entire power network. Immediately, voltage drops, unbalanced loads, and generation and load-side equipment damage may occur. [14] A local fault can

ISSN: 0970-2555

Volume : 54, Issue 4, No.3, April : 2025

cause a wide-area blackout, endangering system stability, economic operations, and safety if not properly identified and isolated. Conventional relays may miss high-impedance or evolving faults, causing prolonged instability and unexpected equipment stress. With renewable energy and dynamic grid topologies, fault profiles are more complex and unpredictable.

The Need for Accurate Classification and Localization:

Transmission line reliability depends on accurate fault classification and localisation. Operators can reduce outage durations and recovery times by quickly identifying the fault type, affected phases, and line location. [15] Using precision to quickly isolate damaged sections protects equipment from further damage. Fault detection aids operational planning by guiding real-time decision-making and maintenance scheduling, optimising resource allocation. These practices improve grid resilience, allowing it to withstand and recover from disruptions.

Importance of Accurate Classification and Localization:

Deep learning models improve fault detection and classification by identifying fault types, locating fault positions with minimal error, and enabling fast isolation and service restoration. They also enable adaptive relaying and dynamic system reconfiguration, improving transmission line reliability and efficiency.

Function	Purpose	Impact
Fault	Recognize occurrence of abnormal	Prevent propagation and isolate fault
Detection	conditions	
Classification	Determine phase(s) and type of fault	Enable selective tripping and safe
		control
Localization	Identify precise location of fault on line	Speed up repair, minimize outage
		duration

Table 2:	Significance	of Fault Diagn	osis Functions[1	161
	~ 5	01 1 WWIT 2 10g		- v j

4. Methodological Framework

Power system fault diagnostics using Deep Neural Networks (DNNs) have made protection mechanisms smarter and data-driven. [17] These models can automatically learn discriminative patterns from large, complex datasets without feature engineering or thresholds. A typical DNN-based fault analysis system has several critical steps, from raw data acquisition to post-decision interpretation. Figure 1 shows the entire process of developing and using DNN models for fault classification and localisation.

Figure 1: Methodological Process Flow of DNN-Based Fault Diagnosis

OVERVIEW OF DNN APPLICATION IN FAULT DIAGNOSTICS :

Depending on DNN architecture (e.g., CNN for spatial patterns, LSTM for temporal sequences), deep learning frameworks model fault detection and localisation as pattern recognition or sequence modelling. [18] These models process voltage and current waveforms to extract fault-related features. Fault type, location, or both may be output. A generic DNN-based fault diagnosis pipeline is shown in Table 3.

Table 3: DNN-Based Fault Detection and Location Pipeline			
Stage	Function	Tools/Techniques Used	

ISSN: 0970-2555

	-	
Data	Collect voltage/current signals during	SCADA systems, PMUs, RTDS/PSCAD
Acquisition	normal and fault conditions	simulations
Preprocessing	Clean and normalize raw data to	Filtering (e.g., Butterworth),
	reduce noise and standardize input	normalization, z-score standardization
Feature	Transform time-domain signals to	FFT, DWT, STFT, HHT, WPD, image
Extraction	more informative representations	transformation for CNNs
Model Design	Construct and train the deep learning	CNN, LSTM, GRU, Transformer,
_	model	Autoencoders, or hybrid combinations
Post-processing	Interpret model outputs for actionable	Thresholding, decision rules, uncertainty
	insights	estimation, confidence scores
Decision &	Generate control signals or	Fault type classification, location
Action	diagnostics for relay systems	estimation (distance or % length)

Volume : 54, Issue 4, No.3, April : 2025

Data Acquisition:

The first step is power system fault signal data capture. SCADA systems, PMUs, and simulation platforms like PSCAD, MATLAB Simulink, and RTDS can do this in real time. [19] Simulation data is controllable and preferred for initial training, but model robustness requires field data.

- Supervisory Control and Data Acquisition (SCADA): Widely used for low-frequency monitoring (1–2 samples per second), but limited in capturing fast transients.
- **Phasor Measurement Units (PMUs):** High-resolution, time-synchronized measurements (30–120 samples/second), ideal for capturing dynamic fault signatures.
- Simulation Tools (MATLAB/Simulink, PSCAD, RTDS): Used to generate synthetic fault datasets under controlled conditions for training deep learning models.

Current trends are Researchers increasingly simulate with IEEE 9, 14, 39, and 118-bus systems.

Hybrid PMU datasets with simulated and real-world data are popular for generalisability.

Preprocessing:

Preprocessing filters and standardises raw data before feeding it to the deep learning model. Bandpass filtering removes high-frequency noise. To improve training stability, statistical metrics like min-max scaling or z-score normalisation normalise voltage and current signals to a common range. [20] PMU and simulator voltage and current signals often have noise, missing data, and inconsistencies that degrade model performance. Therefore, preprocessing matters. Main Preprocessing Steps:

- High-frequency noise can be removed using filters such as low-pass filters and DWT denoising.
- Normalisation: Stabilising DNN training by scaling features to a standard range (e.g., [0, 1]).
- Addressing class imbalance in datasets (e.g., more L-G faults than L-L-G faults) through oversampling (SMOTE) or under sampling techniques.

DNN convergence speed and accuracy improve with normalisation, especially in CNN and LSTM architectures.

Feature Extraction:

Although DNNs can learn features directly from raw data, initial transformations still enhance interpretability and performance. Three Main Domains of Feature Extraction:

Domain	Technique	Use Case
Time Domain	Raw voltage/current signals	Simple CNN models for
		rapid classification
Frequency	Fast Fourier Transform (FFT)	Detects frequency
Domain		changes during faults
Time-	Discrete Wavelet Transform (DWT), Wavelet Packet	Captures localized
Frequency	Decomposition (WPD), Hilbert-Huang Transform	features in evolving

ISSN: 0970-2555

(HHT)

Volume : 54, Issue 4, No.3, April : 2025

Domain

faults

Advanced Techniques are as Image transformation of spectrograms enables image-based classification using CNNs and Entropy-based features (e.g., Shannon entropy of wavelet coefficients) are used for enhanced sensitivity.

DNN Model Design: :

Once pre-processed and feature-engineered data are ready, they are used to train a DNN model. The model type depends on the data format and objective (classification vs. localization). **Common DNN**

ARCHITECTURES AS FOLLOWS;

Model Type	Characteristics	Applications	
CNN	Spatial pattern recognition	Image-based fault classification	
LSTM	Time-series learning	Sequential fault signature modeling	
CNN-LSTM	Hybrid spatiotemporal modeling	Accurate classification under noise	
Autoencoders	Feature compression, anomaly detection	Outlier detection	
Transformers	Parallel attention-based learning	Emerging trend for high-dimensional inputs	

Training Strategy consist use of Adam or RMSProp optimizers. Loss functions as Cross-entropy for classification, MSE for location. Validation using confusion matrix, F1-score, and Receiver Operating Characteristic (ROC) curves.

Post-Processing and Decision Making:

The final step is turning model output into protective device decisions. Classification tasks require fault type identification (e.g., L-G, L-L). Localisation often uses regression to estimate fault distance from the substation. [21] Many models validate results with confidence scores or uncertainty estimations. Post-processing implements actionable decisions after classification and location predictions.

- Confidence thresholds are set for high-probability decision enforcement.
- Integration with protective relays to trigger circuit breakers.
- Error correction modules can be applied to reduce false positives.

Comparison	with	Classical	ML and	Rule-	Based	Systems:

Aspect	Classical ML / Rule-Based	Deep Neural Networks (DNNs)
Feature Engineering	Manual, domain-specific	Automatic, data-driven
Data Handling	Limited to low-dimensional inputs	Handles large-scale, high-dimensional data
Fault Adaptability	Poor in unseen scenarios	Strong generalization with proper training
Model Complexity	Low (e.g., SVM, DT)	High (CNNs, LSTMs, Transformers)
Interpretability	Higher, rule-based logic	Lower (unless paired with Explainable AI)
Accuracy (Recent Studies)	~90–95%	~97–99.9%
Real-time Feasibility	High (less computation)	Improving via edge AI & hardware acceleration

Deep learning pipelines for transmission line fault classification and location are comprehensive and robust. While classical methods laid the groundwork, DNNs automate feature extraction, handle diverse fault types, and learn from complex, noisy, or nonlinear datasets. [22] DNNs will be central to smart grid protection strategies as edge hardware and explainable models make deployment more viable.

Industrial Engineering Journal ISSN: 0970-2555

Volume : 54, Issue 4, No.3, April : 2025

LITERATURE SURVEY & MULTI-DIMENSIONAL CLASSIFICATION:

Over the past decade, Deep Neural Network (DNN) applications for transmission line protection have evolved, allowing intelligent systems to detect, classify, and locate faults with high accuracy and adaptability. The surveyed literature is organised under a multi-dimensional classification framework for a structured and comprehensive understanding. [23] This classification considers functional objectives, input features, neural network architecture, and power system application scenarios. The following sub-sections explain each dimension with examples and research findings. **Classification Based on Functional Objective:**

Different studies adopt varied DNN frameworks depending on whether the goal is fault classification, fault localization, or both. A summary of classification is presented in Table 4.

Table 4: Classification Based on Objective			
Objective	Description	Representative Studies	
Fault Classification	Identify the type of fault (e.g., L-G, L-	CNN (Rahman et al., 2023),	
	L, L-L-G) and the faulty phase(s)	RBFNN (Patel et al., 2022)	
Fault Location	Determine the distance of the fault	LSTM (Guo et al., 2023),	
Estimation	from the monitoring station (in km or	Transformer models (2024+)	
	%)		
Joint Classification	Perform both fault type recognition and	Hybrid CNN-LSTM (Arash et al.,	
& Location	fault localization simultaneously	2024), SG-ELM (Chen et al.)	

Table 4: Classification Based on Objective

DNNs for classification use labelled datasets from simulation or real-world signals, while localisation use regression-based learning with distance-tagged samples.

Classification Based on Input Feature Domain:

Input type greatly impacts DNN model performance and architecture. [24] Inputs can be raw measurements or processed signals from different domains. Recent DNN-based research uses the main domains in Table 5.

Domain	Input Type	Processing	Application in DNN
		Technique	Models
Time-domain	Voltage and current	Raw waveform	Suitable for LSTM, GRU,
	waveforms	input or RMS value	CNN (waveform input)
Frequency-	Spectrum information	FFT, HHT, EMD	Used for fault energy and
domain			resonance analysis
Time-frequency	Decomposed multi-scale	DWT, STFT, CWT,	Input to CNN, LSTM;
	data	MODWT	commonly paired with
			entropy filters
Graphical/Visual	Fault signal	Scalograms, S-	Inputs for 2D/3D CNN,
	images/spectrograms	transform images	Capsule Networks

Table 5: Classification Based on Input Features

Advanced image-based representations like Wavelet Packet Decomposition or S-transform are effective in CNN-based models due to their spatial discrimination.

Classification Based on DNN Architecture:

The input type, desired output (classification or localisation), and fault data temporal/spatial nature determine deep learning architecture. Recently published research favours hybrid and sequence modelling architectures. [25] Common DNN types and characteristics are listed in Table 6.

Table 0. Classification Dased on DIVIV Architecture			
Architecture	Typical Application	Key Strengths	
CNN	Image/spectrogram-based classification	Excellent for spatial feature extraction, robust to noise	

Table 6: Classification Based on DNN Architecture

ISSN: 0970-2555

Volume : 54, Issue 4, No.3, April : 2025

LSTM / GRU	Time-series voltage/current	Captures long-term dependencies and		
	inputs	sequence memory		
Hybrid (CNN-	Spatio-temporal modeling of	Best for evolving faults with spatial-		
LSTM)	STM) faults temporal dynamics			
Autoencoders	Anomaly detection, feature	Unsupervised pattern discovery and fault		
	reduction	representation		
Transformer	Sequential fault analysis at scale	Superior for long-sequence learning and		
models		global context		

CNNs excel at image-like inputs from STFT or wavelet-based spectrograms, while LSTMs excel at waveform sequence modelling. Emerging transformer-based models are beginning to outperform RNNs in sequence tasks with their ability to learn long-term dependencies using attention mechanism.

Classification Based on Power System Scenario:

DNN models also fit the power network's operational context. The system may be a single transmission line, FACTS-equipped, HVDC-linked, or part of a wide-area protection scheme. [26] Signal complexity, sampling resolution, and model scalability depend on these scenarios. Table 7 shows these variations.

Table 7. Classification Dased on Tower System Scenario				
Scenario	Challenges	Example Applications		
Single TL (simple radial)	Simpler signal structure, easier	RBFNN, Feedforward CNN		
	data collection	models		
Multi-terminal / meshed	Multiple sources of disturbance,	LSTM with PMU data, CNN		
networks	synchronization needed	for spectrograms		
With FACTS/DG/HVDC	Signal distortion, varying	Hybrid CNN-DNN models		
	impedance profiles	with data preprocessing		
Wide-Area Monitoring	Data heterogeneity,	GNNs, Transformer-based		
(WAMS/PMU)	communication delay, time	models with PMU datasets		
	alignment			

 Table 7: Classification Based on Power System Scenario

DNNs use synchronised, high-resolution data in large-scale, dynamic grid environments thanks to Phasor Measurement Units (PMUs). Such systems need advanced models that can handle latency, noise, and nonstationary input data. [27] This multi-dimensional classification allows systematic research comparison and shows DNN models' versatility in gearbox line protection. Many studies optimise classification accuracy or localisation precision, but integrated DNN frameworks that adapt across domains, system topologies, and functional objectives are the future.

COMPARATIVE SUMMARY TABLE OF KEY STUDIES:

DNN-based transmission line fault detection and location estimation methods have evolved into a rich and diverse array. Comparative analysis of recent key studies helps explain how model architectures, input domains, and system setups affect performance. [28] Traditional feedforward networks and advanced deep convolutional and hybrid models are covered. Dataset type, input preprocessing, model accuracy, and application (classification, location, or both) show each approach's pros and cons. Table 5, a comparison of representative DNN-based transmission line fault classification and location studies from 2010 to 2024. The table includes various architectures, signal domains, and applications:

Table 8: Comparative Summary of Recent DNN-Based Studies for Fault Classification and Location (2010–2024)

Ref	DNN Type	Input Domain	Dataset	Accuracy	Fault Task	Key	
		/ Features	Source			Highlights	
Kumar et	Feedforward	Time-domain	MATLAB	~94%	Classification	Early use of	

ISSN: 0970-2555

Volume : 54, Issue 4, No.3, April : 2025

al. 2011	ANN	current signals	Simulink			ANN in single-line detection
Mohamed et al. 2015	DNN (4- layer)	DWT + RMS values	PSCAD / RTDS	96%	Classification	Improved accuracy vs shallow networks
Patel et al. 2022	RBFNN	Wavelet Packet Energy (WPE)	MATLAB / Simulation	98%	Classification + Location	Low localization error; simple architecture
Rahman et al. 2023	CapsuleNet + Sparse Filter	Current waveform (converted image)	Real- world Sim Data	99%	Classification	Robust to noise; compact CNN variant
Chen et al. 2023	SG-ELM, SW-ELM	DWT-based statistical features	Real-time Simulator	>98%	Classification + Location	Ensemble strategy; handles system variation
Guo et al. 2023	CNN + HHT	IMF signals from HHT decomposition	Simulated Testbed	98–99%	Classification	Effective in non-linear fault environments
Arash et al. 2024	Conv-LSTM (Hybrid)	Time-series current & voltage	GridSim + PMU Input	~97%	Classification + Location	Captures spatio- temporal fault evolution
Singh et al. 2024	Transformer Encoder + LSTM	Sequential PMU samples	Synthetic + Real Data	97.5%	Classification	Long sequence modeling with attention mechanisms
Sharma et al. 2024	Autoencoder + CNN	Time- frequency spectrograms	PSCAD Data	96.8%	Classification	Efficient unsupervised pretraining; low inference cost
Liu et al. 2022	CNN + LSTM (Stacked Hybrid)	STFT- transformed signal images	Simulated Smart Grid	98.9%	Classification + Location	Excellent accuracy; scalable for wide-area systems

Recent deep learning models (2022–2024) use time-frequency domain features like STFT, WPE, and DWT to improve fault signature detection and fault prediction accuracy. Although lightweight and ensemble models help, generalisation, missing data, and latency remain issues. DNN-based fault classification performance evaluation requires a multi-dimensional approach to ensure fairness, robustness, and real-time applicability beyond rule-based protection systems.

ISSN: 0970-2555

Volume : 54, Issue 4, No.3, April : 2025

STATISTICAL PERFORMANCE INDICATORS:

The literature mostly uses classification-based metrics like accuracy, precision, recall, and F1-score. The percentage of correctly predicted samples is accuracy. [29] Accuracy alone can be misleading in unbalanced datasets where L-G faults dominate. The ratio of true positives to the sum of true and false positives indicates the model's accuracy in predicting a fault type. Recall, or sensitivity, measures the percentage of faults identified correctly. The harmonic mean of precision and recall, the F1-score, is more balanced in multi-class classification tasks with multiple fault types. While these metrics are essential for benchmarking fault classification models, confusion matrices and ROC curves are adding depth.

Metric	Description	Formula	Range
Accuracy	Overall correctness of predictions	(TP + TN) / (TP + FP + FN +	0 to 1
		TN)	
Precision	Correctly predicted fault instances among	TP / (TP + FP)	0 to 1
	all predicted faults		
Recall	Fraction of actual fault cases correctly	TP / (TP + FN)	0 to 1
	predicted		
F1-Score	Harmonic mean of precision and recall	$2 \times (Precision \times Recall) /$	0 to 1
		(Precision + Recall)	

Table 9: Core Statistical Evaluation Metrics for Fault Classification

Chen et al. (2023) and Guo et al. (2023) report F1-scores of 0.97–0.99, indicating high accuracy and class-wise performance, especially in class imbalanced datasets.

Real-Time Feasibility and Inference Latency:

Statistical performance is important, but time efficiency is crucial for grid deployment. Time latency is the delay between signal acquisition and decision output. Relay-level applications typically accept millisecond latency. [30] Optimising high-complexity models like deep hybrid networks or transformer-based architectures requires model pruning, quantisation, and edge AI hardware deployment. Rahman et al. (2023) and Arash et al. (2024) report embedded platform inference time under 50 ms, meeting protection-grade speed requirements. Real-time feasibility is essential for moving lab prototypes to field implementations.

Model	Architecture	Platform	Avg. Inference	Real-Time
			Time	Capable
RBFNN (Patel et al.,	Shallow ANN	MATLAB	~10 ms	Yes
2022)		(CPU)		
CNN (Guo et al.,	1D CNN + HHT	TensorFlow	~25 ms	Yes
2023)		(GPU)		
Conv-LSTM (Arash	Hybrid CNN +	PyTorch	~45 ms	Yes (with
et al., 2024)	LSTM	(CPU/GPU)		tuning)
Transformer (Singh et	Transformer Encoder	TPU / Edge AI	60–80 ms	Marginal
al., 2024)	+ LSTM			

 Table 10: Typical Inference Times of Recent DNN Models for Fault Diagnosis

With Edge AI and neural acceleration hardware, complex models like Conv-LSTM and Transformers are pruned, quantised, and distilled for real-time deployment.

Robustness to Noise, Missing Data, and System Dynamics:

A DNN model's robustness indicates its ability to perform under adverse conditions. Signal noise (e.g., harmonic distortion, communication jitter), sensor or network failures, and system parameter changes like load variations, switching transients, or topology reconfiguration are examples. [31] Modern DNNs, especially convolutional and recurrent architectures, have shown promising denoising results with learnt filters. Some studies simulate partial data loss during training with dropout layers or synthetic noise. Conv-LSTM and transformer architectures with dynamic fault

ISSN: 0970-2555

Volume : 54, Issue 4, No.3, April : 2025

scenarios are more reliable in real-time power systems because they adapt better to system non-stationarities.

Study	Noise Resilience	Missing Data	Adaptive to	Technique Used
		Handling	Load Variation	
Rahman et	High (99%	Partial	Moderate	CapsuleNet + dropout
al. (2023)	accuracy at 20 dB			
	SNR)			
Chen et al.	High	High (≤10%	High	Sparse generalization
(2023)	-	missing tolerated)		(SG-ELM)
Arash et al.	Moderate	Moderate	High	Conv-LSTM with data
(2024)				augmentation
Singh et al.	High	High	Very High	Self-attention
(2024)	_	-		mechanism

Table 11: Robustness Benchmarks in Recent Studies

Models employing dropout layers, denoising autoencoders, or training under noise conditions tend to outperform those trained only on clean datasets.

Dataset Source: Simulated vs. Real-World Data:

Another important evaluation factor is training and testing dataset type. PSCAD, MATLAB/Simulink, and RTDS simulations provide accurate labels and broad fault coverage. Real-world systems have more unpredictability and noise. Real-world or field-synchronized datasets from PMUs or SCADA archives have realistic distortions, measurement errors, and non-ideal signal dynamics. [32] Recent studies (Rahman et al., 2023) recommend hybrid training strategies that use simulated data for base training and real-world data for fine-tuning to improve generalisation and deployment readiness. Demonstrating reliability requires benchmarking models on both types.

Table 12: Comparison Between Simulated and Real-World Datasets for Model Training

Dataset Type	Advantages	Limitations	Example Usage
Simulated	Controlled variation, fault	Lacks measurement noise,	Patel et al. (2022),
(PSCAD,	injection, repeatability	real-world conditions	Guo et al. (2023)
MATLAB)			
Real-World (PMU,	High fidelity, captures	Labeling difficulty, limited	Rahman et al.
SCADA)	practical anomalies	coverage of all faults	(2023), Singh et al.
		_	(2024)
Hybrid (Sim +	Best of both: training +	Requires careful alignment	Chen et al. (2023),
Real)	fine-tuning	and preprocessing	Arash et al. (2024)

Hybrid datasets are increasingly favored for developing models that generalize well yet retain interpretability and controllability.

Generalization and Transferability :

The model's generalisation ability is its accuracy on new grid configurations or fault scenarios. A highly generalised model trained on one transmission line should work on other topologies with little retraining. Cross-system validation is increasingly used to assess transferability by testing the trained model on a new dataset from a different region, utility, or simulation platform. [33] New methods like transfer learning, domain adaptation, and few-shot learning improve generalisation without retraining. Transformer encoders with attention-based mechanisms can capture grid-invariant features.

StudyTest DomainGeneralization
ScoreCross-System
Validation
Performed?Transfer
TechniquesGuo et al.Single TL sim \rightarrow Good ($\leq 2\%$ drop)NoNone

 Table 13: Generalization & Transfer Testing Across Studies

ISSN: 0970-2555

Volume : 54, Issue 4, No.3, April : 2025

(2023)	varied sim			
Chen et al.	$Sim \rightarrow real-time$	Excellent (<1%)	Partial (lab)	Fine-tuning,
(2023)	lab	drop)		Dropout
Arash et	$Sim \rightarrow different$	Good (≤3% drop)	Yes	Data augmentation
al. (2024)	TL config			
Singh et al.	Regional PMU \rightarrow	Very High	Yes	Transformer +
(2024)	national PMU			transfer learning

Domain adaptation, meta-learning, and transformer-based modelling are increasingly used to evaluate advanced DNNs' ability to adapt with minimal retraining. DNN-based fault analysis performance evaluation goes beyond accuracy. [34] A complete benchmarking process requires statistical robustness, low-latency inference, system variability adaptability, and validation across simulated and real-world datasets. As deep learning in power system protection matures, generalisation and deployment scalability become more important.

RESEARCH GAPS & CHALLENGES:

Deep neural network (DNN)-based transmission line fault classification and location systems face several major challenges despite their progress. These issues affect model deployment, reliability, scalability, and explainability in real-world power systems. [35] Key research gaps and system-level challenges from literature, simulations, and real-world pilot deployments are listed here.

Lack of Standardized Benchmark Datasets :

The lack of standard benchmark datasets hinders DNN model evaluation. PSCAD, RTDS, or MATLAB Simulink are used to simulate proprietary or custom data in most studies. These datasets allow flexible fault parameter definition, but fault types, durations, noise levels, and system configurations vary, making inter-study comparisons inconsistent. Due to security and confidentiality concerns, PMU and SCADA datasets are rarely made public. [49]

-	able i ii chanenges Related to Dehemin		
Issue	Impact Possible Remedies		
No public benchmark	Difficult to compare model accuracy	Develop and share open-access	
datasets	and robustness	benchmark sets	
Dataset inconsistency	Model overfitting to specific	Use cross-simulation testing,	
	configurations	synthetic-to-real	
Limited real-world data	Poor generalization under practical	Deploy testbeds and community	
	operating noise	data repositories	

 Table 14: Challenges Related to Benchmark Datasets

Generalization Across Different Power Networks :

DNN-based models often cannot generalise beyond the system or topology they were trained on. Due to differences in impedance, load profiles, and fault signatures, a model trained on a 400 kV double-circuit transmission line in one region may perform poorly on a 220 kV single-circuit line elsewhere[36]. This requires cross-system validation (CSV), which is rarely done. Domain adaptation, transfer learning, and meta-learning are promising solutions that need maturation and application-specific tuning.

Real-Time Implementation Hurdles (Computational Cost) :

Many DNN models perform well offline, but computational constraints make real-time implementation difficult. High-resolution PMU or digital relay data streams require millisecond processing. [37] Deep CNNs, RNNs, and transformer-based models with large parameter sets may require GPUs or edge AI accelerators, increasing deployment cost and complexity.

	Table 15. Real-Time implementation bottlenecks[46]					
Challenge Examples Potential			Potential Solutions			
High	latency	in	deep	LSTM/Transformer > 50 ms on	Model pruning, quantization, edge	

	_			_
able 15: Real-Time	Imp	lementation	Bottlenecks	[48]

ISSN: 0970-2555

Volume : 54, Issue 4, No.3, April : 2025

	-	
models	CPU	deployment
Resource-intensive	Multiple convolution or attention	Use of lightweight models (e.g.,
inference	layers	MobileNet)
Software-hardware	TensorFlow model not optimized	Hardware-aware model
compatibility	for DSP chips	compression, ONNX export

Interpretability of Deep Models (Black-Box Nature):

DNN models—especially deep CNNs and RNNs—are opaque. Unlike rule-based or shallow ML models, fault type and location predictions are hard to explain. This lack of interpretability erodes protection engineers' and utility operators' trust, hindering critical infrastructure adoption. XAI tools like Layer-wise Relevance Propagation (LRP), SHAP values, and attention visualisation are promising. [38] These methods are rarely used in power system fault detection studies.

Handling Hybrid Faults and Evolving Fault Patterns:

Datasets and model design often under-represent hybrid faults (e.g., simultaneous L-G and L-L faults) and evolving patterns from time-varying arc resistance, transformer inrush, or renewable intermittency. Most models use fixed parameters and well-defined fault types. Practical systems may need adaptive or sequence-aware modelling for complex, nonstationary disturbances.

Challenge	Description	DNN Design Requirements	
Hybrid/mixed faults	Coexistence of multiple fault	Multitask learning, probabilistic	
	types	classification	
Evolving signal patterns	Dynamic faults due to arc re-	Temporal sequence modeling,	
	striking, DG switching	online learning	
Low-frequency / high-	Weak or subtle waveforms	Enhanced sensitivity in signal	
impedance faults		processing layers	

Table 16: Fault Complexity Challenges[39]

Data Privacy and Cybersecurity in Smart Grids:

The collection, transmission, and analysis of high-resolution fault data raises privacy and security concerns as power grids become more digital and interconnected. PMU measurements may reveal load patterns, grid status, or customer behaviours that can be exploited if unsecured. [40] Additionally, DNN models trained on sensitive datasets may be vulnerable to adversarial attacks or data leakage.

Issue	Risk	Emerging Solutions		
Unauthorized data access	Exposure of sensitive operational	End-to-end encryption, access		
	information	controls		
Model inversion / leakage	Extraction of training data from	Differential privacy, federated		
	deployed models	learning		
Cyber-attacks on model	Adversarial inputs causing	Adversarial training, anomaly		
inference	misclassification	detection layers		

Table 17: Data Privacy & Security considerations [47]

Transitioning from academic models to field-deployable fault diagnostic systems requires addressing these research gaps. Open benchmark datasets, interpretable architectures, real-time optimisation, and security-conscious training protocols must become standard. These challenges also enable power engineers, data scientists, cybersecurity experts, and system operators to collaborate on new research.

FUTURE DIRECTIONS :

Future research on Deep Neural Networks (DNNs) for transmission line fault classification and localisation will focus on explainability, scalability, and cyber-physical system integration. DNNs are black boxes, limiting trust in critical infrastructure. Explainable AI (XAI) methods like SHAP,

ISSN: 0970-2555

Volume : 54, Issue 4, No.3, April : 2025

LIME, and attention-based visualisations improve operator confidence and support human-in-theloop decisions. Transfer Learning is another important method that allows pre-trained models to adapt to different voltage levels or regional networks without retraining, reducing data needs. DNN training is being revolutionised by digital twins, which simulate real-time faults and component ageing without risky field trials. Edge AI and lightweight models like MobileNet and TinyML are being deployed directly on substations and intelligent devices for faster, low-latency decisionmaking without cloud processing.Federated Learning protects data and allows substation-wide model training without data sharing. Finally, Graph Neural Networks (GNNs) are ideal for fault diagnosis in complex, interconnected power systems because they model the grid's structural dependencies. These innovations aim to improve smart grid fault management intelligence, security, and responsiveness.

CONTRIBUTIONS OF THIS REVIEW :

This review is one of the first to analyse and synthesise deep neural network (DNN)-based approaches for transmission line (TL) fault classification and location. [45] This review examines the architectural details, signal processing strategies, and application contexts of modern deep learning techniques like CNNs, LSTMs, hybrid architectures, and transformer and graph-based models, unlike other machine learning surveys. [43] A novel multi-dimensional taxonomy categorises the literature by functional objective (classification vs. localisation), input features, neural network architecture, and deployment scenario, providing a structured lens for evaluating and comparing methodologies. This paper also creates a benchmarking table that summarises model types, dataset sources, input modalities, and reported performance from recent studies, helping researchers identify strengths, weaknesses, and gaps in the current landscape. More importantly, this review bridges theory and practice by critically discussing real-time feasibility, generalisation, and interpretability issues that are often overlooked in academic settings but essential for smart grid deployment. These contributions outline future innovation and lay the groundwork for intelligent protection systems.

CONCLUSION:

Particularly for the classification and location of faults in transmission lines, deep neural networks (DNNs) have become transforming instruments in the field of power system protection. Their capacity to learn intricate, nonlinear relationships from high-dimensional, time-dependent data has greatly advanced the precision, adaptability, and speed of fault diagnostics relative to conventional and shallow learning approaches. The value of smart, data-driven solutions grows clear as the power grid develops towards more complexity—with the integration of distributed generation, renewable energy, and digital monitoring. This paper emphasises the critical need of strong and autonomous protection systems able to react quickly and precisely to a broad spectrum of fault situations. DNNs present this promise, but realising it completely will need overcoming major obstacles including interpretability, real-time implementation, generalisation, and safe data handling. Simultaneously, the field offers rich prospects for next research in fields including explainable artificial intelligence, federated learning, graph-based modelling, and digital twin-enabled training environments. This review not only catches the present state of the art but also prepares the ground for smarter, more resilient fault management in next-generation power systems by synthesising recent advances and outlining both successes and challenges.

REFERENCES:

- 1. Rahman, M. A., et al. (2023). "Transmission line fault classification using Capsule Network and sparse image filters." IEEE Transactions on Power Delivery.
- 2. Patel, H., et al. (2022). "A radial basis function neural network for fault classification and location using wavelet packet energy." IET Generation, Transmission & Distribution.

ISSN: 0970-2555

Volume : 54, Issue 4, No.3, April : 2025

- 3. Chen, J., et al. (2023). "Ensemble learning using SG-ELM and SW-ELM for transmission line fault detection." Electric Power Systems Research.
- 4. Guo, Y., et al. (2023). "CNN with Hilbert–Huang Transform for robust fault detection in transmission systems." Applied Energy.
- 5. Arash, M., et al. (2024). "Spatio-temporal Conv-LSTM for fault classification and localization in evolving smart grids." IEEE Access.
- 6. Singh, R., et al. (2024). "Transformer Encoder with sequential PMU data for multi-class fault detection." IEEE Transactions on Smart Grid.
- 7. Sharma, D., et al. (2023). "Hybrid Autoencoder-CNN for image-based fault analysis." IET Smart Grid.
- 8. Liu, B., et al. (2022). "Deep CNN-LSTM model for wide-area fault diagnosis." Electric Power Components and Systems.
- 9. Mohamed, A. M., et al. (2015). "Transmission line fault classification using wavelet transform and deep neural networks." International Journal of Electrical Power & Energy Systems.
- 10. Dey, D., et al. (2021). "A comprehensive review of fault classification in power systems using AI techniques." Renewable and Sustainable Energy Reviews.
- 11. Naderi, M., et al. (2022). "Deep learning-based transmission line fault diagnosis using HHT and DNN." Engineering Applications of Artificial Intelligence.
- 12. Zhang, J., et al. (2023). "Multiscale CNN model for transmission fault type classification using CWT features." IEEE Transactions on Industrial Informatics.
- 13. Ahmed, K., et al. (2021). "A comparative study of deep learning methods for fault location in power networks." Electric Power Systems Research.
- 14. Wang, Y., et al. (2020). "Transmission line fault diagnosis based on graph convolution networks." IEEE Transactions on Power Systems.
- 15. Ghosh, S., et al. (2022). "Image-based deep learning using STFT for fault classification." IET Generation, Transmission & Distribution.
- 16. Hasan, M. M., et al. (2023). "Time-series fault localization using bidirectional LSTM." Sustainable Energy, Grids and Networks.
- 17. Zhao, W., et al. (2021). "Knowledge transfer in deep models for grid fault recognition." IEEE Transactions on Industrial Electronics.
- 18. Reddy, V. S., et al. (2022). "Fault detection using transfer learning from simulation to hardware." IEEE Access.
- 19. Wang, L., et al. (2023). "Explainable AI models for transmission line fault diagnosis." Applied Intelligence.
- 20. Al-Awami, A. T., et al. (2024). "Deep federated learning for real-time fault detection in smart substations." IEEE Transactions on Industrial Informatics.
- 21. Zhou, Q., et al. (2020). "Real-time CNN model for fault detection deployed on embedded hardware." Journal of Electrical Engineering & Technology.
- 22. Dehghani, M., et al. (2022). "Hybrid time-frequency feature learning using CNN for fault diagnosis." Expert Systems with Applications.
- 23. Alomari, A. S., et al. (2021). "Transformer-based fault detection in wide-area PMU data." IEEE Access.
- 24. Islam, S. M., et al. (2020). "Lightweight CNN models for edge-based fault detection." Sensors.
- 25. Zhao, H., et al. (2019). "Digital twin–based DNN framework for predictive fault monitoring." Computers in Industry.
- 26. Zhang, C., et al. (2022). "CNN vs RNN performance comparison for power line fault prediction." Neural Computing and Applications.

ISSN: 0970-2555

Volume : 54, Issue 4, No.3, April : 2025

- 27. Venayagamoorthy, G. K., et al. (2018). "Neural networks in power system dynamic security assessment: Trends and applications." Neurocomputing.
- 28. Abdi, H., et al. (2019). "Hybrid DWT-LSTM architecture for fault location in smart grids." Energy Reports.
- 29. Tran, H. T., et al. (2023). "Fault detection using multichannel CNNs with spectrogram input." Journal of Modern Power Systems and Clean Energy.
- 30. Krishna, P. V., et al. (2023). "A hybrid Conv-LSTM for evolving and hidden fault types." Energies.
- 31. Luo, Z., et al. (2024). "Fault classification using vision transformers on 2D fault signatures." Electric Power Systems Research.
- 32. Chen, W., et al. (2023). "Edge computing optimization of neural networks for smart grid protection." Future Generation Computer Systems.
- 33. Jha, A., et al. (2022). "Ensemble DNN models for transmission line event classification." IEEE Transactions on Smart Grid.
- 34. Fu, Q., et al. (2022). "PMU-based fault classification using temporal convolution networks." Electric Power Components and Systems.
- 35. Basu, A., et al. (2021). "Explainable fault detection using XAI-enhanced LSTM." IEEE Systems Journal.
- 36. Li, J., et al. (2020). "Fault location in unbalanced systems using attention-based RNNs." Sustainable Computing: Informatics and Systems.
- 37. Liang, Y., et al. (2019). "Entropy-based deep learning model for multi-class fault diagnosis." Neural Processing Letters.
- 38. Kim, J., et al. (2018). "Transmission line protection using deep belief networks." IEEE PES General Meeting.
- 39. Ghosh, T., et al. (2021). "Wavelet transform and CNN-based method for simultaneous fault classification and localization." Measurement.
- 40. Wang, X., et al. (2023). "Self-supervised learning for transmission fault representation." Engineering Applications of AI.
- 41. Yang, H., et al. (2022). "A review of deep learning techniques in smart grid fault detection." Artificial Intelligence Review.
- 42. Pradhan, A., et al. (2017). "Application of machine learning in distance relaying." IET Generation, Transmission & Distribution.
- 43. He, K., et al. (2022). "Reinforcement learning for adaptive fault isolation." International Journal of Electrical Power & Energy Systems.
- 44. Park, H., et al. (2020). "Anomaly-aware DNN for rare and unknown fault conditions." Pattern Recognition Letters.
- 45. Javed, A., et al. (2024). "Graph neural networks for transmission grid state estimation and fault identification." IEEE Transactions on Neural Networks and Learning Systems.
- 46. Chatterjee, A., et al. (2022). "Time-series signal fusion with hybrid deep networks for fault identification." IEEE Access.
- 47. Shrestha, S., et al. (2021). "Robust hybrid DNN model for evolving and cascading faults." International Journal of Electrical Power & Energy Systems.
- 48. Wu, B., et al. (2023). "Meta-learning for adaptive fault classification in diverse grid conditions." Neural Networks.
- 49. Zhou, F., et al. (2024). "Few-shot learning for rare transmission line fault detection." Expert Systems with Applications.
- 50. Bui, T. M., et al. (2022). "Real-time fault classification in substations using federated CNNs." IEEE Transactions on Industrial Informatics.