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ABSTRACT: 
The growing complexity and susceptibility of contemporary power systems require rapid, precise, 
and intelligent approaches for fault classification and localisation in transmission lines. Conventional 
shallow learning techniques frequently inadequately address nonlinearities, high-dimensional data, 
and dynamic operational conditions. Recently, Deep Neural Networks (DNNs) have proven to be 
effective instruments for learning complex patterns from both raw and processed electrical signals, 
facilitating reliable fault diagnosis. This review provides an analysis of advanced deep neural 
network approaches, including convolutional neural networks, long short-term memory networks, 
hybrid models, and emerging transformer-based architectures, specifically focused on fault 
classification and localisation in transmission systems. This study presents a new taxonomy for 
categorising the literature according to DNN architecture, input feature type, application objective, 
and system environment. The findings indicate that DNNs exhibit enhanced classification accuracy, 
adaptability in real-time, and generalisation across various fault scenarios. However, they also 
underscore ongoing issues, including data scarcity, interpretability, and constraints related to real-
world deployment. This review identifies research gaps and future opportunities, including 
explainable AI, edge computing integration, and transfer learning, to guide researchers and 
practitioners in developing resilient, data-driven protection frameworks for next-generation smart 
grids. 
Keywords: Fault Location Estimation, Deep Neural Networks (DNN), Convolutional Neural 
Networks (CNN), Long Short-Term Memory (LSTM), Data-Driven Protection Systems, Machine 
Learning in Power Systems, Intelligent Fault Localization 
 
INTRODUCTION: 
Transmission lines are critical for the long-distance transport of electricity; however, their 
susceptibility to environmental factors and ageing infrastructure renders them prone to faults. Faults, 
including short circuits and external disturbances, can compromise the reliability of power systems, 
leading to outages and equipment damage. Therefore, rapid and accurate fault classification and 
localisation are essential for ensuring system stability. Conventional fault detection methods, 
including impedance-based relays and travelling wave techniques, have been extensively utilised; 
however, they encounter challenges in addressing the complexities of modern grids, especially 
regarding high-impedance faults and the integration of renewable energy sources. In response, 
machine learning models such as decision trees and shallow neural networks provide more adaptive 
solutions. These models frequently encounter difficulties when dealing with high-dimensional, noisy 
data and exhibit limited generalisation capabilities. The emergence of deep learning, particularly 
Deep Neural Networks (DNNs), has significantly altered fault diagnosis in transmission systems. 
Architectures like Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) 
networks demonstrate proficiency in learning spatial and temporal patterns from raw electrical 
signals, providing enhanced accuracy, noise resilience, and adaptability. Moreover, hybrid deep 
learning models and image-based techniques are advancing fault detection towards enhanced 
automation and intelligence. Despite these advancements, challenges persist, including substantial 
computational demands, absence of standardised datasets, and restricted model interpretability, 
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which impede practical, real-time implementation. A thorough review of deep learning applications 
in this domain is essential. 
This review fulfils the requirement by providing a comprehensive analysis of recent DNN-based 
methods for fault classification and localisation in transmission lines. This work presents a novel 
taxonomy that classifies existing literature based on architecture, input type, signal processing 
techniques, and application context. The review addresses performance benchmarks, implementation 
challenges, and emerging trends such as explainable AI, edge computing, and transfer learning, 
providing insights for future enhancements in power system protection and resilience. 
 
BASICS OF FAULTS IN TRANSMISSION LINES: 
Transmission lines are the main long-distance electrical connections. Their outdoor placement and 
wide coverage across diverse terrains make them prone to faults. Power systems can be severely 
impacted by these faults. Therefore, understanding transmission line fault types, causes, and effects 
is crucial, highlighting the importance of advanced diagnostic tools like Deep Neural Networks 
(DNNs) for effective monitoring and protection. 
Fault Classification: : 
Two main types of transmission line faults are symmetrical vs. asymmetrical and series vs. shunt. 
Three-phase (L-L-L) or three-phase-to-ground (L-L-L-G) symmetrical faults involve all three phases 
equally. These rare events are the most dangerous because they generate high fault currents and 
threaten system stability. Asymmetrical faults, which involve phase imbalance, are more common. 
Unbalanced system conditions caused by single, line-to-line, and double line-to-ground (L-L-G) 
faults disrupt power transmission by causing voltage and current fluctuations.  
Circuit characteristics classify faults as shunt or series. Short circuits between conductors or to 
ground cause the most common shunt faults, which increase current flow and voltage drops. They 
can damage equipment and destabilise systems. Series or open conductor faults occur when one or 
more conductors break without shorting. Though rare, they are harder to detect and can go 
undetected, compromising system safety and performance. Understanding these fault types is crucial 
for accurate detection, classification, and response, especially when using intelligent systems like 
Deep Neural Networks for power system protection. 

Table 1: Types of Transmission Line Faults 
Category Sub-Type Description 
Based on 
Connection 

Symmetrical 
Faults 

Three-phase faults (e.g., ABC, ABC-G) involving all 
phases equally.  

Asymmetrical 
Faults 

Single-line-to-ground (L-G), line-to-line (L-L), double-
line-to-ground (LL-G). 

Based on Nature Series Faults Open conductor or broken conductor faults.  
Shunt Faults Short-circuit faults (phase-to-ground or phase-to-phase). 

 
Real-World Causes of Faults: 
Many environmental, technical, and human factors can cause gearbox line faults, disrupting system 
stability and operations. Weather conditions like lightning, strong winds, snow, ice, and storms cause 
temporary and permanent faults. Old or damaged insulators can cause insulation failures and 
breakdowns. Safety is also threatened by trees, birds, animals, vandalism, and accidents. Dust, salt, 
and pollution can also conduct electricity on insulators, reducing their effectiveness. Age, wear, and 
poor maintenance increase equipment failure risk. This variety of causes causes different fault 
behaviours, complicating detection and diagnosis. 
 

Impact on Power System Reliability: 
Transmission line failures can affect the entire power network. Immediately, voltage drops, 
unbalanced loads, and generation and load-side equipment damage may occur. [14] A local fault can 
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cause a wide-area blackout, endangering system stability, economic operations, and safety if not 
properly identified and isolated. Conventional relays may miss high-impedance or evolving faults, 
causing prolonged instability and unexpected equipment stress. With renewable energy and dynamic 
grid topologies, fault profiles are more complex and unpredictable. 
 
The Need for Accurate Classification and Localization: 
Transmission line reliability depends on accurate fault classification and localisation. Operators can 
reduce outage durations and recovery times by quickly identifying the fault type, affected phases, 
and line location. [15] Using precision to quickly isolate damaged sections protects equipment from 
further damage. Fault detection aids operational planning by guiding real-time decision-making and 
maintenance scheduling, optimising resource allocation. These practices improve grid resilience, 
allowing it to withstand and recover from disruptions. 
Importance of Accurate Classification and Localization: 
Deep learning models improve fault detection and classification by identifying fault types, locating 
fault positions with minimal error, and enabling fast isolation and service restoration. They also 
enable adaptive relaying and dynamic system reconfiguration, improving transmission line reliability 
and efficiency. 

Table 2: Significance of Fault Diagnosis Functions[16] 
Function Purpose Impact 

Fault 
Detection 

Recognize occurrence of abnormal 
conditions 

Prevent propagation and isolate fault 

Classification Determine phase(s) and type of fault Enable selective tripping and safe 
control 

Localization Identify precise location of fault on line Speed up repair, minimize outage 
duration 

 
4. Methodological Framework 
Power system fault diagnostics using Deep Neural Networks (DNNs) have made protection 
mechanisms smarter and data-driven. [17] These models can automatically learn discriminative 
patterns from large, complex datasets without feature engineering or thresholds. A typical DNN-
based fault analysis system has several critical steps, from raw data acquisition to post-decision 
interpretation. Figure 1 shows the entire process of developing and using DNN models for fault 
classification and localisation. 

 
Figure 1: Methodological Process Flow of DNN-Based Fault Diagnosis 

 
OVERVIEW OF DNN APPLICATION IN FAULT DIAGNOSTICS : 
Depending on DNN architecture (e.g., CNN for spatial patterns, LSTM for temporal sequences), 
deep learning frameworks model fault detection and localisation as pattern recognition or sequence 
modelling. [18] These models process voltage and current waveforms to extract fault-related 
features. Fault type, location, or both may be output. A generic DNN-based fault diagnosis pipeline 
is shown in Table 3. 

Table 3: DNN-Based Fault Detection and Location Pipeline 
Stage Function Tools/Techniques Used 

Post-ProcessingModel Design Feature 
Extraction Preprocessing

Data 
Acquisiti

on 
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Data 
Acquisition 

Collect voltage/current signals during 
normal and fault conditions 

SCADA systems, PMUs, RTDS/PSCAD 
simulations 

Preprocessing Clean and normalize raw data to 
reduce noise and standardize input 

Filtering (e.g., Butterworth), 
normalization, z-score standardization 

Feature 
Extraction 

Transform time-domain signals to 
more informative representations 

FFT, DWT, STFT, HHT, WPD, image 
transformation for CNNs 

Model Design Construct and train the deep learning 
model 

CNN, LSTM, GRU, Transformer, 
Autoencoders, or hybrid combinations 

Post-processing Interpret model outputs for actionable 
insights 

Thresholding, decision rules, uncertainty 
estimation, confidence scores 

Decision & 
Action 

Generate control signals or 
diagnostics for relay systems 

Fault type classification, location 
estimation (distance or % length) 

 
Data Acquisition: 
The first step is power system fault signal data capture. SCADA systems, PMUs, and simulation 
platforms like PSCAD, MATLAB Simulink, and RTDS can do this in real time. [19] Simulation data 
is controllable and preferred for initial training, but model robustness requires field data. 

 Supervisory Control and Data Acquisition (SCADA): Widely used for low-frequency 
monitoring (1–2 samples per second), but limited in capturing fast transients. 

 Phasor Measurement Units (PMUs): High-resolution, time-synchronized measurements 
(30–120 samples/second), ideal for capturing dynamic fault signatures. 

 Simulation Tools (MATLAB/Simulink, PSCAD, RTDS): Used to generate synthetic fault 
datasets under controlled conditions for training deep learning models. 

Current trends are Researchers increasingly simulate with IEEE 9, 14, 39, and 118-bus systems. 
Hybrid PMU datasets with simulated and real-world data are popular for generalisability. 
Preprocessing: 
Preprocessing filters and standardises raw data before feeding it to the deep learning model. 
Bandpass filtering removes high-frequency noise. To improve training stability, statistical metrics 
like min-max scaling or z-score normalisation normalise voltage and current signals to a common 
range. [20] PMU and simulator voltage and current signals often have noise, missing data, and 
inconsistencies that degrade model performance. Therefore, preprocessing matters. Main 
Preprocessing Steps:  

 High-frequency noise can be removed using filters such as low-pass filters and DWT 
denoising. 

 Normalisation: Stabilising DNN training by scaling features to a standard range (e.g., [0, 1]).  
 Addressing class imbalance in datasets (e.g., more L-G faults than L-L-G faults) through 

oversampling (SMOTE) or under sampling techniques.  
DNN convergence speed and accuracy improve with normalisation, especially in CNN and LSTM 
architectures. 
Feature Extraction: 
Although DNNs can learn features directly from raw data, initial transformations still enhance 
interpretability and performance. Three Main Domains of Feature Extraction: 

Domain Technique Use Case 
Time Domain Raw voltage/current signals Simple CNN models for 

rapid classification 
Frequency 
Domain 

Fast Fourier Transform (FFT) Detects frequency 
changes during faults 

Time-
Frequency 

Discrete Wavelet Transform (DWT), Wavelet Packet 
Decomposition (WPD), Hilbert-Huang Transform 

Captures localized 
features in evolving 
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Domain (HHT) faults 
Advanced Techniques are as Image transformation of spectrograms enables image-based 
classification using CNNs and Entropy-based features (e.g., Shannon entropy of wavelet 
coefficients) are used for enhanced sensitivity. 
DNN Model Design: : 
Once pre-processed and feature-engineered data are ready, they are used to train a DNN model. The 
model type depends on the data format and objective (classification vs. localization). Common DNN  
 
ARCHITECTURES AS FOLLOWS; 
Model Type Characteristics Applications 
CNN Spatial pattern recognition Image-based fault classification 
LSTM Time-series learning Sequential fault signature modeling 
CNN-LSTM Hybrid spatiotemporal modeling Accurate classification under noise 
Autoencoders Feature compression, anomaly 

detection 
Outlier detection 

Transformers Parallel attention-based learning Emerging trend for high-dimensional 
inputs 

Training Strategy consist use of Adam or RMSProp optimizers. Loss functions as Cross-entropy for 
classification, MSE for location. Validation using confusion matrix, F1-score, and Receiver 
Operating Characteristic (ROC) curves. 
Post-Processing and Decision Making: 
The final step is turning model output into protective device decisions. Classification tasks require 
fault type identification (e.g., L-G, L-L). Localisation often uses regression to estimate fault distance 
from the substation. [21] Many models validate results with confidence scores or uncertainty 
estimations. Post-processing implements actionable decisions after classification and location 
predictions. 

 Confidence thresholds are set for high-probability decision enforcement. 
 Integration with protective relays to trigger circuit breakers. 
 Error correction modules can be applied to reduce false positives. 

Comparison with Classical ML and Rule-Based Systems: 
Aspect Classical ML / Rule-Based Deep Neural Networks (DNNs) 
Feature Engineering Manual, domain-specific Automatic, data-driven 
Data Handling Limited to low-dimensional 

inputs 
Handles large-scale, high-dimensional 
data 

Fault Adaptability Poor in unseen scenarios Strong generalization with proper 
training 

Model Complexity Low (e.g., SVM, DT) High (CNNs, LSTMs, Transformers) 
Interpretability Higher, rule-based logic Lower (unless paired with Explainable 

AI) 
Accuracy (Recent 
Studies) 

~90–95% ~97–99.9% 

Real-time Feasibility High (less computation) Improving via edge AI & hardware 
acceleration 

 
Deep learning pipelines for transmission line fault classification and location are comprehensive and 
robust. While classical methods laid the groundwork, DNNs automate feature extraction, handle 
diverse fault types, and learn from complex, noisy, or nonlinear datasets. [22] DNNs will be central 
to smart grid protection strategies as edge hardware and explainable models make deployment more 
viable. 
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LITERATURE SURVEY & MULTI-DIMENSIONAL CLASSIFICATION: 
Over the past decade, Deep Neural Network (DNN) applications for transmission line protection 
have evolved, allowing intelligent systems to detect, classify, and locate faults with high accuracy 
and adaptability. The surveyed literature is organised under a multi-dimensional classification 
framework for a structured and comprehensive understanding. [23] This classification considers 
functional objectives, input features, neural network architecture, and power system application 
scenarios. The following sub-sections explain each dimension with examples and research findings. 
Classification Based on Functional Objective: 
Different studies adopt varied DNN frameworks depending on whether the goal is fault 
classification, fault localization, or both. A summary of classification is presented in Table 4. 

Table 4: Classification Based on Objective 
Objective Description Representative Studies 
Fault Classification Identify the type of fault (e.g., L-G, L-

L, L-L-G) and the faulty phase(s) 
CNN (Rahman et al., 2023), 
RBFNN (Patel et al., 2022) 

Fault Location 
Estimation 

Determine the distance of the fault 
from the monitoring station (in km or 
%) 

LSTM (Guo et al., 2023), 
Transformer models (2024+) 

Joint Classification 
& Location 

Perform both fault type recognition and 
fault localization simultaneously 

Hybrid CNN-LSTM (Arash et al., 
2024), SG-ELM (Chen et al.) 

DNNs for classification use labelled datasets from simulation or real-world signals, while 
localisation use regression-based learning with distance-tagged samples. 
Classification Based on Input Feature Domain: 
Input type greatly impacts DNN model performance and architecture. [24] Inputs can be raw 
measurements or processed signals from different domains. Recent DNN-based research uses the 
main domains in Table 5. 

Table 5: Classification Based on Input Features 
Domain Input Type Processing 

Technique 
Application in DNN 
Models 

Time-domain Voltage and current 
waveforms 

Raw waveform 
input or RMS value 

Suitable for LSTM, GRU, 
CNN (waveform input) 

Frequency-
domain 

Spectrum information FFT, HHT, EMD Used for fault energy and 
resonance analysis 

Time-frequency Decomposed multi-scale 
data 

DWT, STFT, CWT, 
MODWT 

Input to CNN, LSTM; 
commonly paired with 
entropy filters 

Graphical/Visual Fault signal 
images/spectrograms 

Scalograms, S-
transform images 

Inputs for 2D/3D CNN, 
Capsule Networks 

Advanced image-based representations like Wavelet Packet Decomposition or S-transform are 
effective in CNN-based models due to their spatial discrimination. 
Classification Based on DNN Architecture: 
The input type, desired output (classification or localisation), and fault data temporal/spatial nature 
determine deep learning architecture. Recently published research favours hybrid and sequence 
modelling architectures. [25] Common DNN types and characteristics are listed in Table 6. 

Table 6: Classification Based on DNN Architecture 
Architecture Typical Application Key Strengths 
CNN Image/spectrogram-based 

classification 
Excellent for spatial feature extraction, 
robust to noise 
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LSTM / GRU Time-series voltage/current 
inputs 

Captures long-term dependencies and 
sequence memory 

Hybrid (CNN-
LSTM) 

Spatio-temporal modeling of 
faults 

Best for evolving faults with spatial-
temporal dynamics 

Autoencoders Anomaly detection, feature 
reduction 

Unsupervised pattern discovery and fault 
representation 

Transformer 
models 

Sequential fault analysis at scale Superior for long-sequence learning and 
global context 

CNNs excel at image-like inputs from STFT or wavelet-based spectrograms, while LSTMs excel at 
waveform sequence modelling. Emerging transformer-based models are beginning to outperform 
RNNs in sequence tasks with their ability to learn long-term dependencies using attention 
mechanism. 
Classification Based on Power System Scenario: 
DNN models also fit the power network's operational context. The system may be a single 
transmission line, FACTS-equipped, HVDC-linked, or part of a wide-area protection scheme. [26] 
Signal complexity, sampling resolution, and model scalability depend on these scenarios. Table 7 
shows these variations. 

Table 7: Classification Based on Power System Scenario 
Scenario Challenges Example Applications 
Single TL (simple radial) Simpler signal structure, easier 

data collection 
RBFNN, Feedforward CNN 
models 

Multi-terminal / meshed 
networks 

Multiple sources of disturbance, 
synchronization needed 

LSTM with PMU data, CNN 
for spectrograms 

With FACTS/DG/HVDC Signal distortion, varying 
impedance profiles 

Hybrid CNN-DNN models 
with data preprocessing 

Wide-Area Monitoring 
(WAMS/PMU) 

Data heterogeneity, 
communication delay, time 
alignment 

GNNs, Transformer-based 
models with PMU datasets 

DNNs use synchronised, high-resolution data in large-scale, dynamic grid environments thanks to 
Phasor Measurement Units (PMUs). Such systems need advanced models that can handle latency, 
noise, and nonstationary input data. [27] This multi-dimensional classification allows systematic 
research comparison and shows DNN models' versatility in gearbox line protection. Many studies 
optimise classification accuracy or localisation precision, but integrated DNN frameworks that adapt 
across domains, system topologies, and functional objectives are the future. 
 
COMPARATIVE SUMMARY TABLE OF KEY STUDIES: 
DNN-based transmission line fault detection and location estimation methods have evolved into a 
rich and diverse array. Comparative analysis of recent key studies helps explain how model 
architectures, input domains, and system setups affect performance. [28] Traditional feedforward 
networks and advanced deep convolutional and hybrid models are covered. Dataset type, input 
preprocessing, model accuracy, and application (classification, location, or both) show each 
approach's pros and cons. Table 5, a comparison of representative DNN-based transmission line fault 
classification and location studies from 2010 to 2024. The table includes various architectures, signal 
domains, and applications: 
Table 8: Comparative Summary of Recent DNN-Based Studies for Fault Classification and   
               Location (2010–2024) 
Ref DNN Type Input Domain 

/ Features 
Dataset 
Source 

Accuracy Fault Task Key 
Highlights 

Kumar et Feedforward Time-domain MATLAB ~94% Classification Early use of 
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al. 2011 ANN current signals Simulink ANN in 
single-line 
detection 

Mohamed 
et al. 
2015 

DNN (4-
layer) 

DWT + RMS 
values 

PSCAD / 
RTDS 

96% Classification Improved 
accuracy vs 
shallow 
networks 

Patel et 
al. 2022 

RBFNN Wavelet 
Packet Energy 
(WPE) 

MATLAB 
/ 
Simulation 

98% Classification 
+ Location 

Low 
localization 
error; simple 
architecture 

Rahman 
et al. 
2023 

CapsuleNet 
+ Sparse 
Filter 

Current 
waveform 
(converted 
image) 

Real-
world Sim 
Data 

99% Classification Robust to 
noise; 
compact 
CNN variant 

Chen et 
al. 2023 

SG-ELM, 
SW-ELM 

DWT-based 
statistical 
features 

Real-time 
Simulator 

>98% Classification 
+ Location 

Ensemble 
strategy; 
handles 
system 
variation 

Guo et al. 
2023 

CNN + HHT IMF signals 
from HHT 
decomposition 

Simulated 
Testbed 

98–99% Classification Effective in 
non-linear 
fault 
environments 

Arash et 
al. 2024 

Conv-LSTM 
(Hybrid) 

Time-series 
current & 
voltage 

GridSim + 
PMU 
Input 

~97% Classification 
+ Location 

Captures 
spatio-
temporal fault 
evolution 

Singh et 
al. 2024 

Transformer 
Encoder + 
LSTM 

Sequential 
PMU samples 

Synthetic 
+ Real 
Data 

97.5% Classification Long 
sequence 
modeling 
with attention 
mechanisms 

Sharma et 
al. 2024 

Autoencoder 
+ CNN 

Time-
frequency 
spectrograms 

PSCAD 
Data 

96.8% Classification Efficient 
unsupervised 
pretraining; 
low inference 
cost 

Liu et al. 
2022 

CNN + 
LSTM 
(Stacked 
Hybrid) 

STFT-
transformed 
signal images 

Simulated 
Smart 
Grid 

98.9% Classification 
+ Location 

Excellent 
accuracy; 
scalable for 
wide-area 
systems 

Recent deep learning models (2022–2024) use time-frequency domain features like STFT, WPE, and 
DWT to improve fault signature detection and fault prediction accuracy. Although lightweight and 
ensemble models help, generalisation, missing data, and latency remain issues. DNN-based fault 
classification performance evaluation requires a multi-dimensional approach to ensure fairness, 
robustness, and real-time applicability beyond rule-based protection systems. 
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STATISTICAL PERFORMANCE INDICATORS: 
The literature mostly uses classification-based metrics like accuracy, precision, recall, and F1-score. 
The percentage of correctly predicted samples is accuracy. [29] Accuracy alone can be misleading in 
unbalanced datasets where L-G faults dominate. The ratio of true positives to the sum of true and 
false positives indicates the model's accuracy in predicting a fault type. Recall, or sensitivity, 
measures the percentage of faults identified correctly. The harmonic mean of precision and recall, the 
F1-score, is more balanced in multi-class classification tasks with multiple fault types. While these 
metrics are essential for benchmarking fault classification models, confusion matrices and ROC 
curves are adding depth. 

Table 9: Core Statistical Evaluation Metrics for Fault Classification 
Metric Description Formula Range 
Accuracy Overall correctness of predictions (TP + TN) / (TP + FP + FN + 

TN) 
0 to 1 

Precision Correctly predicted fault instances among 
all predicted faults 

TP / (TP + FP) 0 to 1 

Recall Fraction of actual fault cases correctly 
predicted 

TP / (TP + FN) 0 to 1 

F1-Score Harmonic mean of precision and recall 2 × (Precision × Recall) / 
(Precision + Recall) 

0 to 1 

Chen et al. (2023) and Guo et al. (2023) report F1-scores of 0.97–0.99, indicating high accuracy and 
class-wise performance, especially in class imbalanced datasets. 
Real-Time Feasibility and Inference Latency: 
Statistical performance is important, but time efficiency is crucial for grid deployment. Time latency 
is the delay between signal acquisition and decision output. Relay-level applications typically accept 
millisecond latency. [30] Optimising high-complexity models like deep hybrid networks or 
transformer-based architectures requires model pruning, quantisation, and edge AI hardware 
deployment. Rahman et al. (2023) and Arash et al. (2024) report embedded platform inference time 
under 50 ms, meeting protection-grade speed requirements. Real-time feasibility is essential for 
moving lab prototypes to field implementations. 

Table 10: Typical Inference Times of Recent DNN Models for Fault Diagnosis 
Model Architecture Platform Avg. Inference 

Time 
Real-Time 
Capable 

RBFNN (Patel et al., 
2022) 

Shallow ANN MATLAB 
(CPU) 

~10 ms Yes 

CNN (Guo et al., 
2023) 

1D CNN + HHT TensorFlow 
(GPU) 

~25 ms Yes 

Conv-LSTM (Arash 
et al., 2024) 

Hybrid CNN + 
LSTM 

PyTorch 
(CPU/GPU) 

~45 ms Yes (with 
tuning) 

Transformer (Singh et 
al., 2024) 

Transformer Encoder 
+ LSTM 

TPU / Edge AI 60–80 ms Marginal 

With Edge AI and neural acceleration hardware, complex models like Conv-LSTM and 
Transformers are pruned, quantised, and distilled for real-time deployment. 
Robustness to Noise, Missing Data, and System Dynamics: 
A DNN model's robustness indicates its ability to perform under adverse conditions. Signal noise 
(e.g., harmonic distortion, communication jitter), sensor or network failures, and system parameter 
changes like load variations, switching transients, or topology reconfiguration are examples. [31] 
Modern DNNs, especially convolutional and recurrent architectures, have shown promising 
denoising results with learnt filters. Some studies simulate partial data loss during training with 
dropout layers or synthetic noise. Conv-LSTM and transformer architectures with dynamic fault 
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scenarios are more reliable in real-time power systems because they adapt better to system non-
stationarities. 

Table 11: Robustness Benchmarks in Recent Studies 
Study Noise Resilience Missing Data 

Handling 
Adaptive to 
Load Variation 

Technique Used 

Rahman et 
al. (2023) 

High (99% 
accuracy at 20 dB 
SNR) 

Partial Moderate CapsuleNet + dropout 

Chen et al. 
(2023) 

High High (≤10% 
missing tolerated) 

High Sparse generalization 
(SG-ELM) 

Arash et al. 
(2024) 

Moderate Moderate High Conv-LSTM with data 
augmentation 

Singh et al. 
(2024) 

High High Very High Self-attention 
mechanism 

Models employing dropout layers, denoising autoencoders, or training under noise conditions tend to 
outperform those trained only on clean datasets. 
Dataset Source: Simulated vs. Real-World Data: 
Another important evaluation factor is training and testing dataset type. PSCAD, 
MATLAB/Simulink, and RTDS simulations provide accurate labels and broad fault coverage. Real-
world systems have more unpredictability and noise. Real-world or field-synchronized datasets from 
PMUs or SCADA archives have realistic distortions, measurement errors, and non-ideal signal 
dynamics. [32] Recent studies (Rahman et al., 2023) recommend hybrid training strategies that use 
simulated data for base training and real-world data for fine-tuning to improve generalisation and 
deployment readiness. Demonstrating reliability requires benchmarking models on both types. 

Table 12: Comparison Between Simulated and Real-World Datasets for Model Training 
Dataset Type Advantages Limitations Example Usage 
Simulated 
(PSCAD, 
MATLAB) 

Controlled variation, fault 
injection, repeatability 

Lacks measurement noise, 
real-world conditions 

Patel et al. (2022), 
Guo et al. (2023) 

Real-World (PMU, 
SCADA) 

High fidelity, captures 
practical anomalies 

Labeling difficulty, limited 
coverage of all faults 

Rahman et al. 
(2023), Singh et al. 
(2024) 

Hybrid (Sim + 
Real) 

Best of both: training + 
fine-tuning 

Requires careful alignment 
and preprocessing 

Chen et al. (2023), 
Arash et al. (2024) 

Hybrid datasets are increasingly favored for developing models that generalize well yet retain 
interpretability and controllability. 
Generalization and Transferability : 
The model's generalisation ability is its accuracy on new grid configurations or fault scenarios. A 
highly generalised model trained on one transmission line should work on other topologies with little 
retraining. Cross-system validation is increasingly used to assess transferability by testing the trained 
model on a new dataset from a different region, utility, or simulation platform. [33] New methods 
like transfer learning, domain adaptation, and few-shot learning improve generalisation without 
retraining. Transformer encoders with attention-based mechanisms can capture grid-invariant 
features. 

Table 13: Generalization & Transfer Testing Across Studies 
Study Test Domain Generalization 

Score 
Cross-System 
Validation 
Performed? 

Transfer 
Techniques 

Guo et al. Single TL sim → Good (≤2% drop) No None 
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(2023) varied sim 
Chen et al. 
(2023) 

Sim → real-time 
lab 

Excellent (<1% 
drop) 

Partial (lab) Fine-tuning, 
Dropout 

Arash et 
al. (2024) 

Sim → different 
TL config 

Good (≤3% drop) Yes Data augmentation 

Singh et al. 
(2024) 

Regional PMU → 
national PMU 

Very High Yes Transformer + 
transfer learning 

Domain adaptation, meta-learning, and transformer-based modelling are increasingly used to 
evaluate advanced DNNs' ability to adapt with minimal retraining. DNN-based fault analysis 
performance evaluation goes beyond accuracy. [34] A complete benchmarking process requires 
statistical robustness, low-latency inference, system variability adaptability, and validation across 
simulated and real-world datasets. As deep learning in power system protection matures, 
generalisation and deployment scalability become more important. 
 
RESEARCH GAPS & CHALLENGES: 
Deep neural network (DNN)-based transmission line fault classification and location systems face 
several major challenges despite their progress. These issues affect model deployment, reliability, 
scalability, and explainability in real-world power systems. [35] Key research gaps and system-level 
challenges from literature, simulations, and real-world pilot deployments are listed here. 
Lack of Standardized Benchmark Datasets : 
The lack of standard benchmark datasets hinders DNN model evaluation. PSCAD, RTDS, or 
MATLAB Simulink are used to simulate proprietary or custom data in most studies. These datasets 
allow flexible fault parameter definition, but fault types, durations, noise levels, and system 
configurations vary, making inter-study comparisons inconsistent. Due to security and confidentiality 
concerns, PMU and SCADA datasets are rarely made public. [49] 

Table 14: Challenges Related to Benchmark Datasets 
Issue Impact Possible Remedies 
No public benchmark 
datasets 

Difficult to compare model accuracy 
and robustness 

Develop and share open-access 
benchmark sets 

Dataset inconsistency Model overfitting to specific 
configurations 

Use cross-simulation testing, 
synthetic-to-real 

Limited real-world data Poor generalization under practical 
operating noise 

Deploy testbeds and community 
data repositories 

 
Generalization Across Different Power Networks : 
DNN-based models often cannot generalise beyond the system or topology they were trained on. 
Due to differences in impedance, load profiles, and fault signatures, a model trained on a 400 kV 
double-circuit transmission line in one region may perform poorly on a 220 kV single-circuit line 
elsewhere[36]. This requires cross-system validation (CSV), which is rarely done. Domain 
adaptation, transfer learning, and meta-learning are promising solutions that need maturation and 
application-specific tuning. 
Real-Time Implementation Hurdles (Computational Cost) : 
Many DNN models perform well offline, but computational constraints make real-time 
implementation difficult. High-resolution PMU or digital relay data streams require millisecond 
processing. [37] Deep CNNs, RNNs, and transformer-based models with large parameter sets may 
require GPUs or edge AI accelerators, increasing deployment cost and complexity. 

Table 15: Real-Time Implementation Bottlenecks[48] 
Challenge Examples Potential Solutions 
High latency in deep LSTM/Transformer > 50 ms on Model pruning, quantization, edge 
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models CPU deployment 
Resource-intensive 
inference 

Multiple convolution or attention 
layers 

Use of lightweight models (e.g., 
MobileNet) 

Software-hardware 
compatibility 

TensorFlow model not optimized 
for DSP chips 

Hardware-aware model 
compression, ONNX export 

 
Interpretability of Deep Models (Black-Box Nature): 
DNN models—especially deep CNNs and RNNs—are opaque. Unlike rule-based or shallow ML 
models, fault type and location predictions are hard to explain. This lack of interpretability erodes 
protection engineers' and utility operators' trust, hindering critical infrastructure adoption. XAI tools 
like Layer-wise Relevance Propagation (LRP), SHAP values, and attention visualisation are 
promising. [38] These methods are rarely used in power system fault detection studies. 
Handling Hybrid Faults and Evolving Fault Patterns: 
Datasets and model design often under-represent hybrid faults (e.g., simultaneous L-G and L-L 
faults) and evolving patterns from time-varying arc resistance, transformer inrush, or renewable 
intermittency. Most models use fixed parameters and well-defined fault types. Practical systems may 
need adaptive or sequence-aware modelling for complex, nonstationary disturbances. 

Table 16: Fault Complexity Challenges[39] 
Challenge Description DNN Design Requirements 
Hybrid/mixed faults Coexistence of multiple fault 

types 
Multitask learning, probabilistic 
classification 

Evolving signal patterns Dynamic faults due to arc re-
striking, DG switching 

Temporal sequence modeling, 
online learning 

Low-frequency / high-
impedance faults 

Weak or subtle waveforms Enhanced sensitivity in signal 
processing layers 

 
Data Privacy and Cybersecurity in Smart Grids: 
The collection, transmission, and analysis of high-resolution fault data raises privacy and security 
concerns as power grids become more digital and interconnected. PMU measurements may reveal 
load patterns, grid status, or customer behaviours that can be exploited if unsecured. [40] 
Additionally, DNN models trained on sensitive datasets may be vulnerable to adversarial attacks or 
data leakage. 

Table 17: Data Privacy & Security considerations [47] 
Issue Risk Emerging Solutions 
Unauthorized data access Exposure of sensitive operational 

information 
End-to-end encryption, access 
controls 

Model inversion / leakage Extraction of training data from 
deployed models 

Differential privacy, federated 
learning 

Cyber-attacks on model 
inference 

Adversarial inputs causing 
misclassification 

Adversarial training, anomaly 
detection layers 

Transitioning from academic models to field-deployable fault diagnostic systems requires addressing 
these research gaps. Open benchmark datasets, interpretable architectures, real-time optimisation, 
and security-conscious training protocols must become standard. These challenges also enable power 
engineers, data scientists, cybersecurity experts, and system operators to collaborate on new research. 
 
FUTURE DIRECTIONS : 
Future research on Deep Neural Networks (DNNs) for transmission line fault classification and 
localisation will focus on explainability, scalability, and cyber-physical system integration. DNNs 
are black boxes, limiting trust in critical infrastructure. Explainable AI (XAI) methods like SHAP, 
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LIME, and attention-based visualisations improve operator confidence and support human-in-the-
loop decisions. Transfer Learning is another important method that allows pre-trained models to 
adapt to different voltage levels or regional networks without retraining, reducing data needs. DNN 
training is being revolutionised by digital twins, which simulate real-time faults and component 
ageing without risky field trials. Edge AI and lightweight models like MobileNet and TinyML are 
being deployed directly on substations and intelligent devices for faster, low-latency decision-
making without cloud processing.Federated Learning protects data and allows substation-wide model 
training without data sharing. Finally, Graph Neural Networks (GNNs) are ideal for fault diagnosis 
in complex, interconnected power systems because they model the grid's structural dependencies. 
These innovations aim to improve smart grid fault management intelligence, security, and 
responsiveness. 
 
CONTRIBUTIONS OF THIS REVIEW : 
This review is one of the first to analyse and synthesise deep neural network (DNN)–based 
approaches for transmission line (TL) fault classification and location. [45] This review examines the 
architectural details, signal processing strategies, and application contexts of modern deep learning 
techniques like CNNs, LSTMs, hybrid architectures, and transformer and graph-based models, 
unlike other machine learning surveys. [43] A novel multi-dimensional taxonomy categorises the 
literature by functional objective (classification vs. localisation), input features, neural network 
architecture, and deployment scenario, providing a structured lens for evaluating and comparing 
methodologies. This paper also creates a benchmarking table that summarises model types, dataset 
sources, input modalities, and reported performance from recent studies, helping researchers identify 
strengths, weaknesses, and gaps in the current landscape. More importantly, this review bridges 
theory and practice by critically discussing real-time feasibility, generalisation, and interpretability 
issues that are often overlooked in academic settings but essential for smart grid deployment. These 
contributions outline future innovation and lay the groundwork for intelligent protection systems. 
 
CONCLUSION: 
Particularly for the classification and location of faults in transmission lines, deep neural networks 
(DNNs) have become transforming instruments in the field of power system protection. Their 
capacity to learn intricate, nonlinear relationships from high-dimensional, time-dependent data has 
greatly advanced the precision, adaptability, and speed of fault diagnostics relative to conventional 
and shallow learning approaches. The value of smart, data-driven solutions grows clear as the power 
grid develops towards more complexity—with the integration of distributed generation, renewable 
energy, and digital monitoring. This paper emphasises the critical need of strong and autonomous 
protection systems able to react quickly and precisely to a broad spectrum of fault situations. DNNs 
present this promise, but realising it completely will need overcoming major obstacles including 
interpretability, real-time implementation, generalisation, and safe data handling. Simultaneously, the 
field offers rich prospects for next research in fields including explainable artificial intelligence, 
federated learning, graph-based modelling, and digital twin-enabled training environments. This 
review not only catches the present state of the art but also prepares the ground for smarter, more 
resilient fault management in next-generation power systems by synthesising recent advances and 
outlining both successes and challenges. 
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