

Industrial Engineering Journal ISSN: 0970-2555 Volume : 53, Issue 4, April : 2024

NEURAL EVENT PROFILES FOR REAL-TIME CYBER THREAT DETECTION

SYED SHAHEEN, M.tech Assistant Professor, Department of CSE, Raghu Engineering College, Dakamarri, Andhrapradesh Email: - <u>shaheen.syed@raghuenggcollege.in</u>
K. KOWSIK, B Tech Student, Department of CSC, Raghu Institute of Technology, Dakamarri, Andhrapradesh Email: - <u>kurakowshik@gmail.com</u>
P. HEMANTH, B Tech Student, Department of CSC, Raghu Institute of Technology, Dakamarri, Andhrapradesh Email: - <u>petlahemanth909@gmail.com</u>
N. SASI KIRAN KUMAR, B Tech Student, Department of CSC, Raghu Institute of Technology, Dakamarri, Andhrapradesh Email: - <u>sasikirankumar2003@gmail.com</u>
P. DEEPAK CHANDRA, B Tech Student, Department of CSC, Raghu Institute of Technology, Dakamarri, Andhrapradesh Email: - <u>sasikirankumar2003@gmail.com</u>

ABSTRACT

Developing an automated method for detecting cyberthreats is one of the main issues facing cyber security. In this paper, we describe an artificial neural network-based cyberthreat detection method. The suggested solution improves cyber-threat identification by converting a large number of gathered security events into unique event profiles and utilizing a deep learning-based detection algorithm. In this study, we created an AI-SIEM system using a variety of artificial neural network techniques, such as CNN, LSTM, and FCNN, together with event profiling for data preparation. The approach helps security analysts react quickly to cyber threats by focusing on differentiating between true positive and false positive signals. The authors of this paper used two benchmark datasets to conduct all of the experiments. (NSLKDD and CICIDS2017) as well as two real-world datasets gathered. We ran trials utilizing the five traditional machine-learning techniques (SVM, k-NN, RF, NB, and DT) to assess the performance comparison with current methodologies. As a result, the study's experimental findings confirm that our suggested approaches may be used as learning-based models for network intrusion detection and demonstrate that, even when used in real-world scenarios, their performance surpasses that of traditional machine learning techniques.

Keywords: -

SVM, k-NN, RF, NB, and DT, CNN, PSO, LSTM, and FCNN, NSLKDD and CICIDS2017

1. INTRODUCTION

Learning-based methods for identifying cyberattacks have advanced further with the advent of artificial intelligence (AI) technology, and numerous studies have found significant outcomes with them. However, it is still very difficult to defend IT systems against threats and bad activities in networks since cyberattacks are always changing. Effective defenses and security concerns were prioritized for dependable solutions due to numerous network intrusions and criminal activities. [1], [2], [3], [4]. In the past, there have been two main methods for identifying network breaches and cyberthreats. Within the company network, an intrusion prevention system (IPS) is implemented. Its primary way of examining network protocols and flows is signature-based. It creates relevant intrusion alarms, also known as security events, and notifies another system—like SIEM—of the alerts it generates. The collection and handling of IPS alerts has been the primary emphasis of security information and event management, or SIEM. Among the different security operations systems available for analyzing the gathered security events and logs, the SIEM is the most popular and reliable option [5]. Additionally, security analysts try to investigate suspicious alerts based on policies and thresholds, as well as find malicious activity by utilizing attack-related knowledge to analyze correlations between events and find patterns of behavior.

However, because of their high false alarm rate and the volume of security data they include, it is still challenging to identify and detect intrusions against intelligent network attacks [6], [7]. For this reason,

UGC CARE Group-1,

Industrial Engineering Journal ISSN: 0970-2555

Volume : 53, Issue 4, April : 2024

machine learning and artificial intelligence algorithms for attack detection have received more attention in the most recent studies in the field of intrusion detection. Security analysts can investigate network attacks more quickly and automatically with the help of advancements in AI fields. These learning-based techniques necessitate using previous threat data to understand the attack model, then using the taught models to identify incursions for unknown cyberthreats. [8], [9] For analysts who need to quickly examine a huge number of events, a learning-based approach designed to determine whether an attack occurred in a big amount of data can be helpful. Information security solutions can be broadly classified into two types, according to [10]: machine learning-driven solutions and analyst-driven solutions. Analyst-driven solutions are based on rules that are established by analysts, who are security professionals. In the meantime, emerging cyberthreat detection can be enhanced by machine learning-driven solutions that identify uncommon or aberrant patterns [10]. However, even while learning-based techniques are helpful in identifying cyberattacks in networks and systems, we found that the four primary limitations of current learning-based techniques

Initially, labelled data are needed for learning-based detection techniques to train the model and assess the produced learning models. Moreover, obtaining such labelled data at a scale that permits precise model training is not simple. Many commercial SIEM solutions lack labelled data that can be used with supervised learning models, even though labelled data is necessary. [10].

Second, because they are absent from popular network security systems, most of the learning characteristics that are theoretically employed in each study are not generalized features in the real world [3]. As such, it is challenging to apply to real-world scenarios. Deep learning technologies have been used in recent intrusion detection research efforts, and performance has been assessed using popular datasets such as NSLKDD [11], CICIDS2017 [12], and Kyoto-Honeypot [13]. Unfortunately, because to a lack of features, many earlier research that used benchmark datasets that were correct but could not be generalized to the real world. An implemented learning model must be evaluated using real-world datasets in order to get over these restrictions.

.Third, although it may result in a high false alert rate, employing an anomaly-based approach to identify network intrusion can assist in identifying unidentified cyberthreats [6]. When numerous false positive alarms are generated, it can be very expensive and time- consuming for staff to investigate them.

Fourth, some hackers can gradually alter their behavior patterns in order to conceal their malicious operations [10], [14]. The detection models are not adequate because attackers continuously modify their behavior, even in cases when learning-based models are feasible. Furthermore, the analysis of transient network security events has been the primary focus of practically all security systems . We anticipate that, over extended periods of time, studying the security event history connected with the formation of events can be one way to identify the malicious conduct of cyberattacks and protect against them.

This effort is primarily motivated by these issues. We describe an AI-SIEM system that uses deep learning techniques to distinguish between genuine and false warnings in order to address these issues. Our suggested system can assist security analysts in quickly responding to cyberthreats that are scattered over a significant volume of security events. In order to achieve this, the suggested AI-SIEM system specifically incorporates an event pattern extraction technique that works by correlating event sets in the gathered data and aggregating events using a concurrency feature. Our event profiles can provide as succinct input material for different types of deep neural networks. Furthermore, it makes it possible for the analyst to compare all of the data with long-term historical data in a timely and effective manner.

2. LITERATURE SURVEY AND RELATED WORK

1. Enhanced Network Anomaly Detection Based on Deep Neural Networks

Abstract: The last ten years have seen an enormous rise in Internet applications, which has greatly raised the requirement for information network security. An intrusion detection system is required to

UGC CARE Group-1,

Industrial Engineering Journal ISSN: 0970-2555

Volume : 53, Issue 4, April : 2024

be able to adjust to the constantly shifting threat landscape in its capacity as the main protection of network infrastructure. Researchers in the fields of machine learning and data mining have developed a variety of supervised and unsupervised methods to reliably detect anomalies.

. In the field of machine learning, deep learning uses a structure like to a neuron to accomplish learning tasks. Because deep learning has made enormous strides in a variety of fields, including speech processing, computer vision, and natural language processing, to mention a few, it has fundamentally altered the way we approach learning challenges. The only applications for this new technology that warrant investigation are those related to information security. This research looks into whether deep learning techniques are suitable for anomaly-based intrusion detection systems. We created anomaly detection models for this study based on many deep neural network architectures, such as convolutional neural networks., both recurrent neural networks and autoencoders. These deep models were assessed using the NSLKDD test data sets, NSLKDDTest+ and NSLKDDTest21, and trained on the NSLKDD training data set. The authors conducted every experiment in this paper on a GPU-based test bed. Using well-known classification techniques, such as extreme learning machine, nearest neighbor, decisiontree, random forest, support vector machine, naive-bays, and quadratic discriminant analysis, conventional machine learning-based intrusion detection models were constructed. Well-known classification criteria, such as receiver operating characteristics, area under curve, precision-recall curve, mean average precision, and classification accuracy, were used to assess both deep and traditional machine learning models. Promising outcomes from deep IDS model experiments were observed for practical use in anomaly detection systems.

2. Network Intrusion Detection Based on Directed Acyclic Graph and Belief Rule Base

Abstract: Network situation awareness depends heavily on intrusion detection. Although certain techniques have been put out to identify network intrusion, they are unable to directly and efficiently make use of semi-quantitative data, which combines quantitative data with expert knowledge. As a result, this study suggests a novel detection model built on a belief rule base (BRB) and a directed acyclic graph (DAG). The suggested methodology, dubbed DAG-BRB, uses the DAG to build a multi-layered BRB model that can prevent an explosion of rule number combinations due to a variety of intrusion kinds. An enhanced constraint covariance matrix adaption evolution method (CMA-ES) is devised that can efficiently address the constraint problem in the BRB, leading to the optimal parameters of the DAG-BRB model. A case study was was used to test the efficiency of the proposed DAG-BRB. The results showed that compared with other detection models, the DAG-BRB model has a higher detection rate and can be used in real networks.

3. HAST-IDS: Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection

Abstract: One of the main areas of research in the intrusion detection field is the creation of anomalybased intrusion detection systems (IDS). By examining network traffic, an IDS can identify novel and unknown assaults and learns to distinguish between normal and abnormal activity. Nevertheless, feature design plays a critical role in an intrusion detection system's effectiveness, and creating a feature set that effectively describes network traffic is still a work in progress. A significant limitation on the practical uses of anomaly- based intrusion detection systems (IDSs) is their elevated false alarm rate (FAR). The hierarchical spatial-temporal features-based intrusion detection system (HAST-IDS) is a unique intrusion detection system that we present in this study , It uses long short-term memory networks to learn high-level temporal properties and deep convolutional neural networks (CNNs) to learn low-level spatial features of network traffic. Deep neural networks carry out the entire feature learning process automatically; feature engineering methods are not needed. The FAR is effectively decreased by the automatically learned traffic features. The suggested system's performance is assessed using the standard DARPA1998 and ISCX2012 data sets. The experimental results reveal the efficacy of the HAST-IDS in feature learning and FAR reduction, as it beats other published techniques in terms of accuracy, detection rate, and FAR.

UGC CARE Group-1,

ISSN: 0970-2555

Volume : 53, Issue 4, April : 2024

4. Data security analysis for DDoS defense of cloud based networks

Abstract: Distributed computing has emerged as a useful strategy for maximizing an institution's or organization's capabilities while reducing the need for extra resources. In this sense, distributed computing contributes to the expansion of institutions' IT capacities. It is important to remember that distributed computing is now a crucial component of the majority of the growing IT industry. It is regarded as an innovative and effective way to grow a business. As more businesses and individuals choose to keep their data and apps on the cloud, serious concerns have emerged about how to safeguard sensitive data from online intrusions by both internal and external parties.

. Despite a great deal of interest in cloud-based computing, many clients are reluctant to move their sensitive data to the cloud due to security concerns. Security is a major worry since a large portion of an organization's data makes it an attractive target for hackers. If security issues are not resolved, distributed computing will continue to stall. As a result, this study offers a fresh assessment and understanding of a honeypot. Honeypots are a device that fall into two categories: research and handling. Managing honeypots is a way to lessen risks in the real world. As a tool for investigation, a research honeypot is used to identify and analyze online threats. Thus, this research project's main goal is to do a thorough network security study using is to do an intensive network security analysis through a virtualized honeypot for cloud servers to tempt an attacker and provide a new means of monitoring their behavior

3. EXISTING SYSTEM

It is challenging for restaurant management to gauge how patrons will react to the concept and food in unmanned restaurants because there is no staff on hand. Because they only include a portion of user reviews, current rating services like Google and TripAdvisor only fix part of the issue. Only a portion of the patrons who independently rate the restaurant on independent review sites use these rating systems. This primarily pertains to clients that have either a highly positive or unfavorable experience throughout their visit.

4. PROPOSED Methodology

The proposed the AI-SIEM system particularly includes an event pattern extraction method by aggregating together events with a concurrency feature and correlating between event sets in collected data. Our event profiles have the potential to provide concise input data for various deep neural networks. Moreover, it enables the analyst to handle all the data promptly and efficiently by comparison with long-term history data

5. IMPLEMENTATION

MODULES:

upload Train Dataset

Run Preprocessing TF-IDF Algorithm Generate Event Vector

Neural Network Profiling Run SVM Algorithm Run KNN Algorithm

Run Naive Bayes Algorithm Run Decision Tree Algorithm Accuracy Comparison Graph Precision Comparison Graph Recall Comparison Graph

F Measure Comparison Graph MODULES DESCRIPTION:

Propose algorithms consists of following module

1. **Data Parsing**: This module take input dataset and parse that dataset to create a raw data event model

2. **TF-IDF:** using this module we will convert raw data into event vector which will contains normal and attack signatures

3. Event Profiling Stage: Processed data will be splitted into train and test model based on profiling

Industrial Engineering Journal ISSN: 0970-2555 Volume : 53, Issue 4, April : 2024

events.

4. Deep Learning Neural Network Model: This module runs CNN and LSTM algorithms on train and test data and then generate a training model. Generated trained model will be applied on test data to calculate prediction score, Recall, Precision and F Measure. Algorithm will learn perfectly will yield better accuracy result and that model will be selected to deploy on real system for attack detection 5. Datasets which we are using for testing are of huge size and while building model it's going to out of memory error but kdd_train.csv dataset working perfectly but to run all algorithms it will take 5 to 10 minutes. You can test remaining datasets also by reducing its size or running it on high configuration system.

5. RESULTS AND DISCUSSION SCREENSHOTS

	Cyber Th	reat Detection	n Based on Art	tificial Neur	al Networks U	ing Event Pro	files			
Upload Train Datase Run Raudom Forest Precision Compariso	et Run Preprocessing TF-IDF Al Algorithm Run Naive Bayes in Graph Recall Compariso	lgorithm Gen Algorithm a Graph	nerate Event Vecto Run Decision Tre FMeasure Comp	r Neural 2 te Algorithm arison Graph	ietwork Profiling Extension SV	Run SVM Alg	orithm R Accuracy	un KNN Algorith Comparison Gra	m pk	
Fig	g 1: _In above sc	reen clic	ck on 'U	pload 7	rain Dat	taset' but	tton an	d uploa	d dataset	30 G 🥠
ℓ Open $\leftarrow \rightarrow \sim \uparrow$	CyberThreat > CyberThreat > datasets	~ C S	Search datasets	× م	al Networks U	sing Event Pro	files			
Organize New folder A Home Gallery Gallery Gallery Desttop Desttop Procurents Protures Lurak Destrop	Name Fiday-WorkingHours-Afternoon-PortScan Fiday-WorkingHours-Morning Ketal Industan Thursday-WorkingHours-Afternoon-Infil. Thursday-WorkingHours-Afternoon-Infil. Thursday-WorkingHours-Morning-Web Tuesday-WorkingHours	Date modified 04-09-2020 17:04 04-09-2020 17:10 04-09-2020 09:39 04-09-2020 09:38 04-09-2020 17:10 04-09-2020 17:10 04-09-2020 17:10	Type XLS Worksheet XLS Worksheet XLS Worksheet XLS Worksheet XLS Worksheet XLS Worksheet XLS Worksheet VI © Mrachasheet	Size 22 30 1, 1, 1, 3, 3, 3, 3, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,						

ndom Forest Algorithm Run Naive Bayes Algorithm Run Decision Tree Algorithm Extension SVM with PSO Accuracy Comparison Grap	load Train Dataset Run Preprocessing TF-IDF Algorithm	Generate Event Vector Neural Network Profiling Run SVM Algorithm Run KNN Algorithm
	n Random Forest Algorithm Run Naive Bayes Algorithm	n Run Decision Tree Algorithm Extension SVM with PSO Accuracy Comparison Graph
n Comparison Graph Recall Comparison Graph FMeasure Comparison Graph	cision Comparison Graph Recall Comparison Graph	FMeasure Comparison Graph

Fig 2: -In above screen uploading 'kdd_train.csv' dataset and after upload will get below screen

Industrial Engineering Journal ISSN: 0970-2555

Volume : 53, Issue 4, April : 2024

Cyber Threat Detection Based on Artificial Neural Networks Using Event Profiles		-		~
Cyber Threat Defec	ction Based on Artificial Neural Networks Using Event Profiles			
C:/Users/kurak/OneDrive/Documents/final year/CyberThreat/CyberThre	reat/datasets/kdd_train.csv LoadedTotal dataset size : 9999			
Upload Train Dataset Run Preprocessing TF-IDF Algorithm	Generate Event Vector Neural Network Profiling Run SVM Algorithm Run KNN Algorithm			
Run Random Forest Algorithm Run Naive Bayes Algorithm	Run Decision Tree Algorithm Extension SVM with PSO Accuracy Comparison Graph			
Precision Comparison Graph Recall Comparison Graph	FMeasure Comparison Graph			
📑 Q Search 🗾) 👽 📰 🔄 🧑 🛃 🗮 🦁 🥩 📲 🌌 🏹 👼 🔹 🔺 📾 🕬 🚽	4) ■ 16:33 16:04-202	¦ 🦷	-

Fig 3: -In above screen we can see dataset contains 9999 records and now click on 'Run Preprocessing TF-IDF Algorithm' button to convert raw dataset into TF-IDF values

Fig 4: -In above screen TF-IDF processing completed and now click on 'Generate Event Vector' button to create vector from TF-IDF with different events

Cyber Threat Detection Based on Artificial Neural Networks Using Event Profiles	-	0	×
Cyber Threat Detection Based on Artificial Neural Networks Using Event Profiles			
		L	
Total unique events found in dataset are ["aormal" 'arptnue" 'warrezclient' 'ipyweep' 'portsweep' 'teardrop' 'amap' 'satan' 'amurf' 'pod' 'back' ipwes, passwd' fftp_write' 'multikop' 'rootkit' 'buffer_overflow' 'imap' 'warezmaster'] Total dataset size: 9999 Data used for testing : 2000			
Enlaud Train Dataset Run Prennovasing TE-IDE Algorithm Generate Fourt Vector Neurol Network Profiling Run SVM Algorithm Run KNN Algorithm			
Run Random Forest Algorithm Run Naive Bayes Algorithm Run Decision Tree Algorithm Extension SVM with PSO Accuracy Comparison Graph			
Precision Comparison Graph Recall Comparison Graph FMeasure Comparison Graph			
🏭 🔍 Search 🛛 📶 🤯 📁 🗁 🧮 🥥 📅 📕 🧐 🧐 🦉 🐙 🎽 🏂 🏹 🦉 🔺 📾 🕀 👭 🕈 d	0 D 16-3	4 D	%

ISSN: 0970-2555

Volume : 53, Issue 4, April : 2024

Fig 5: -In above screen we can see total different unique events names and in below we can see dataset total size and application using 80% dataset (7999 records) for training and using 20% dataset (2000 records) for testing. Now dataset train and test events model ready and now click on 'Neural

Network Profiling' button to create LSTM and CNN model

C:\Windows\system32\cmd.exe				_	\Box \times
X_test.shape before = () X_test.shape after = (20 y_test.shape = (2000, 1) Model: "sequential_1"	2000, 2978) 900, 2978) 3)				
Layer (type)	Output Shape	Param #			
lstm_1 (LSTM)	(None, 32)	4352			
dropout_1 (Dropout)	(None, 32)	0			
dense_1 (Dense)	(None, 32)	1056			
dense_2 (Dense)	(None, 17)	561			
Total params: 5,969 Trainable params: 5,969 Non-trainable params: 0					
None WARNING:tensorflow:From C th_grad.py:1250: add_disp removed in a future versi Instructions for updating Use tf.where in 2.0, whicl WARNING:tensorflow:From C _backend.py:422: The name	:\Users\Admin\AppData\ atch_support. <locals>. on. : h has the same broadca: :\Users\Admin\AppData\ tf.global_variables i</locals>	Local\Programs\Pyth wrapper (from tenso st rule as np.where Local\Programs\Pyth s deprecated. Pleas	on\Python37\lib\site-packages\ter rflow.python.ops.array_ops) is de oon\Python37\lib\site-packages\ker e use tf.compat.v1.global_variabj	nsorflow\python eprecated and w ras\backend\ter les instead.	n\ops∖ma will be nsorflow
Epoch 1/1	1 - FT	A· 3·24 - loss· A 2	234 - accuracy: 0.9412		

Fig 6: _In above screen LSTM model is generated and its epoch running also started and its starting accuracy is 0.94. Running for entire dataset may take time so wait till LSTM and CNN training

process completed. Here dataset contains 7999 records and LSTM will iterate all records to filter and build model.

Select C:\Windows\system32\cmd.	exe				-		\times
Instructions for updating: Use tf.where in 2.0, which WARNING:tensorflow:From C:\ _backend.py:422: The name t	has the same broadca Users\Admin\AppData\ f.global_variables i	st rule as np.where Local\Programs\Pytho s deprecated. Please	n\Python37\lib\site-pa use tf.compat.v1.glob	ickages\keras\back pal_variables inst	kend∖t tead.	ensorf	^ low
Epoch 1/1 7999/7999 [l\Programs\Python\Py is ill-defined and b ehavior. er, msg_start, len(r	4s 24ms/step - loss: thon37\lib\site-pack eing set to 0.0 in l esult))	0.1463 - accuracy: 0. ages\sklearn\metrics_ abels with no predicte	9413 classification.py d samples.Use `:	/:1272 zero_d	: Unde livisio	fin n`
Layer (type)	Output Shape	Param #					
dense_3 (Dense)	(None, 512)	1525248					
activation_1 (Activation)	(None, 512)	0					
dropout_2 (Dropout)	(None, 512)	0					
dense_4 (Dense)	(None, 512)	262656					
activation_2 (Activation)	(None, 512)	0					
dropout_3 (Dropout)	(None, 512)	0					
dense_5 (Dense)	(None, 17)	8721					~

Fig 7: _In above selected text we can see LSTM complete all iterations and in below lines we can see CNN model also starts execution

C\\Windows\system32\cmd.exe	_	σ	\times
activation_3 (Activation) (None, 17) 0			^
Total params: 1,796,625			
Non-trainable params: 0			
None			
Train on 6399 samples, validate on 1600 samples Enoch 1/10			
- 4s - loss: 1.2111 - accuracy: 0.7203 - val_loss: 0.5013 - val_accuracy: 0.8525			
zpuch 2/10 - 4s - loss: 0.4060 - accuracy: 0.8640 - val_loss: 0.3384 - val_accuracy: 0.8975			
Epoch 3/10 - 4s - loss: 0.2389 - accuracy: 0.9336 - val loss: 0.1992 - val accuracy: 0.9413			
Epoch 4/10			
Epoch 5/18			
- 45 - Joss: 0.0938 - accuracy: 0.9720 - val_loss: 0.1366 - val_accuracy: 0.9613 Epoch 6/10			
- 45 - loss: 0.0649 - accuracy: 0.9825 - val_loss: 0.1091 - val_accuracy: 0.9712 Enoch 7/10			
- 4s - loss: 0.0435 - accuracy: 0.9891 - val_loss: 0.1011 - val_accuracy: 0.9737			
zpuch α/10 - 4s - loss: 0.0361 - accuracy: 0.9903 - val_loss: 0.1072 - val_accuracy: 0.9719			
Epoch 9/10 - 4s - loss: 0.0265 - accuracy: 0.9933 - val loss: 0.0978 - val accuracy: 0.9737			
Epoch 10/10			

Fig 8: -In above screen CNN also starts first iteration with accuracy as 0.72 and after completing all iterations 10 we got filtered improved accuracy as 0.99 and multiply by 100 will give us 99% accuracy. So, CNN is giving better accuracy compare to LSTM and now see below GUI screen with all details

Fig 9: -In above screen we can see both algorithms accuracy, precision, recall and FMeasure values. Now click on 'Run SVM Algorithm' button to run existing SVM algorithm

	Cyber Threat Detec	tion Based on Artific	ial Neural Networks Us	ing Event Profiles		
Deep Learning LSTM Extension Accuracy LSTM Accuracy : 94.16133829307556 LSTM Precision : 0.6666666666666667 LSTM Recall : 66.666666666666667 LSTM Recall : 66.66666666666667 LSTM Precision : 0.66667 CNN Accuracy CNN Accuracy CNN Accuracy CNN Accuracy SVM Accuracy SVM Accuracy SVM Precision : 6.173710077815805 SVM Accuracy SVM Precision : 47.044754547082 SVM Accuracy SVM Accuracy						
Upload Train Dataset Run Preprocess	sing TF-IDF Algorithm	Generate Event Vector	Neural Network Profiling	Run SVM Algorithm	Run KNN Algorithm	
Run Random Forest Algorithm Run	n Naive Bayes Algorithm	Run Decision Tree A	Igorithm Extension SV	M with PSO Acc	uracy Comparison Graph	
Precision Comparison Graph Rec	call Comparison Graph	FMeasure Compariso	on Graph			
					ENG	17:09

Fig 10: -In above screen we can see SVM algorithm output values and now click on 'Run KNN Algorithm' to run KNN algorithm

ISSN: 0970-2555

Volume : 53, Issue 4, April : 2024

Cyber Threat Detection Based on Artificial Neural Networks Using Event Profiles CNN Prediction Results CNN Prediction 25:40114024075749 CNN Recall :2:2377013095856 CNN Events :50:12664313951504 CNN Accuracy : 72.15 Upload Train Dataset Run Preprocessing TF-IDF Algorithm Generate Event Vector Neural Network Profiling Run SVM Algorithm Run KNN Algorithm		NAMES OF TAXABLE PARTY OF TAXABLE PARTY.	A DESCRIPTION OF A				
NN Predictions Results NN Precisions : 55.40114024975749 NN Recall : 32.3277918995959 NN Accuracy : 72.15		Cyber Threat Dete	ction Based on Artificial	Neural Networks Us	ing Event Profiles		
NN Frediction Results NN Frediction 25:40114024975749 INN FOLEName 19.12306433991504 NN Accuracy: 72.15							
pload Train Dataset Run Preprocessing TF-IDF Algorithm Generate Event Vector Neural Network Profiling Run SVM Algorithm Run KNN Algorithm	NN Prediction Results NN Precision : 55.40114024975749 NN Recall : 32.3277918998989 NN FMeasure : 39.12806433951504 NN Accuracy : 72.15						
Joad Train Dataset Run Proprocessing TF-IDF Algorithm Generate Event Vector Neural Network Profiling Run SVM Algorithm Run KNN Algorithm							
pload Train Dataset Run Preprocessing TF-IDF Algorithm Generate Event Vector Neural Network Profiling Run SVM Algorithm Run KNN Algorithm							
pload Train Dataset Run Preprocessing TF-IDF Algorithm Generate Event Vector Neural Network Profiling Run SVM Algorithm Run KNN Algorithm							
han an harrier. For chicking a no signment construction recent recent recent recent recently recent signment recent r	aload Train Dataset Run Prenero	essing TE-IDE Algorithm	Generate Event Vector	Neural Network Profiling	Run SVM Algorithm	Run KNN Almorithm	
		trend to the reference				Team Per cer regermann	
un Random Forest Algorithm Run Naive Bayes Algorithm Run Decision Tree Algorithm Extension SVM with PSO Accuracy Comparison Graph	un Random Forest Algorithm	Run Naive Bayes Algorithm	Run Decision Tree Algor	Extension SV	M with PSO Acc	uracy Comparison Graph	
recision Comparison Graph Recall Comparison Graph FMeasure Comparison Graph			EMeasure Comparison (iraph			

Fig 11: -In above screen we can see KNN algorithm output values and now click on 'Run Random Forest Algorithm' to run Random Forest algorithm

Fig 12: -In above screen we can see Random Forest algorithm output values and now click on 'Run Naïve Bayes Algorithm' to run Naïve Bayes algorithm

		Cyber Threat Dete	ection Based on Artific	cial Neural	Networks Usi	ng Event Profiles		
Naire Bayes Prediction Res Naire Bayes Precision 32.3 Naire Bayes Recall: 16.668 Naire Bayes FMeasure : 19 Naire Bayes Accuracy : 66.6	uts 6355631439793 8381796654394 83859719200275 149999999999999999	75						
Upload Train Dataset	Run Preproces	sing TF-IDF Algorithm	Generate Event Vector	Neural Net	work Profiling	Run SVM Algorith	n Run KNN Algorithm	
Run Random Forest Algorit	hm Ru	n Naive Bayes Algorithm	Run Decision Tree A	lgorithm	Extension SVN	I with PSO	Accuracy Comparison Graph	
Precision Comparison Grap	h Re	call Comparison Graph	FMeasure Comparis	on Graph				
		Search 🚅		o -	= 😡 🛷			G 🗢 (1) 🖸 🔐 17:21

Fig 13: -In above screen we can see Naïve Bayes algorithm output values and now click on 'Run Decision Tree Algorithm' to run Decision Tree Algorithm

ISSN: 0970-2555

Volume : 53, Issue 4, April : 2024

	Cyber Threat Det	ection Based on Artifici	al Neural Networks Ush	ng Event Profiles		
ecision Tree Prediction Rest ecision Tree Precision : 3.26 ecision Tree Recall : 6.25	alts 25					
ecision Tree FMeasure : 4.2 ecision Tree Accuracy : 52.2	8712220762155					
island Train Distance	Pau Provincessing TE IDE Algorithm	Concepto Front Verter	Named Naturals Profiling	Pup SVM Almosithm	Pos KNN Almostelan	
un Random Forest Algorith	m Run Naixe Baxes Algorithm	Run Decision Tree Als	Torithm Extension SV	I with PSO	racy Comparison Graph	
recision Comparison Graph	Recall Comparison Graph	FMeasure Comparison	Graph			
	-					
	A CONTRACTOR OF A CONTRACTOR O					

Fig 14: -In above screen we can see Decision Tree algorithm output values and Now clock on Extension SVM with PSO

1	Cyber Threat Detection Based on 4	Artificial Neural Networks Usi	ng Event Profiles		
Total features in dataset hefore applying PSO Total features in dataset after applying PSO SVM with PSO Precisions : 99,987508103814 SVM with PSO Recall : 99,68194635713817 SVM with PSO Recall : 99,68194635713817 SVM with PSO Accuracy : 99,9	: 1978 1473 8 75				
Upload Train Dataset Run Preprocessi	ng TF-IDF Algorithm Generate Event Ve	ctor Neural Network Profiling	Run SVM Algorithm	Run KNN Algorithm	
Run Random Forest Algorithm Run	Naive Bayes Algorithm Run Decision	Tree Algorithm Extension SV?	M with PSO Accur	acy Comparison Graph	
Precision Comparison Graph Rec.	all Comparison Graph FMeasure Co	mparison Graph			
	Q Search 🗾 💆 📼	= = 0 = = 0	🥩 🐖 🛒 💽	^	17:56 C 🦓

Fig 15: In the above screen We can see SVM with PSO output values

Comparison Graphs: Accuracy Comparison:

Fig16:In the above screen we can see Accuracy of different algorithms Precision Comparison:

Fig17: In the above screen we can see precision of different algorithms Fmeasure Comparison:

Fig18: In the above screen we can see Fmeasure of different algorithms Recall Comparison:

Fig19: In the above screen we can see Recall of different algorithms

7. CONCLUSION AND FUTURE SCOPE CONCLUSION

We have presented the AI-SIEM system in this study, which makes use of artificial neural networks and event profiles. Condensing extremely huge amounts of data into event profiles and utilizing deep learning-based detection techniques to improve cyber-threat detection capabilities are the innovative aspects of our work. By comparing long-term security data, the AI-SIEM system helps security analysts to respond quickly and effectively to important security alarms. It can also assist security analysts in quickly responding to cyber threats scattered throughout a multitude of security events by decreasing false positive warnings. We conducted a performance comparison utilizing two benchmark datasets (NSLKDD, CICIDS2017) and two real-world datasets to assess performance. Using well-known benchmark datasets, we first demonstrated how our techniques might be used as one of the learning-

Industrial Engineering Journal ISSN: 0970-2555 Volume : 53, Issue 4, April : 2024

based models for network intrusion detection based on a comparison experiment with other approaches. Second, we demonstrated encouraging results from the evaluation using two real datasets, showing that our approach performed better in terms of accurate classifications than traditional machine learning techniques

7.1 FUTURE SCOPE

We will concentrate on improving previous threat forecasts in the future in order to address the growing issue of cyberattacks. We will achieve this by using a multiple deep learning approach to identify long-term patterns in historical data. Furthermore, in order to enhance the accuracy of labeled datasets for supervised learning and create high-quality learning datasets, a significant number of SOC analysts would personally endeavor to document labels of raw security events over a period of many months.

8. REFERENCES

[1] S. Naseer, Y. Saleem, S. Khalid, M. K. Bashir, J. Han, M. M. Iqbal, K. Han, "Enhanced Network Anomaly Detection Based on Deep Neural Networks," IEEE Access, vol. 6, pp. 48231- 48246, 2018.
[2] B. Zhang, G. Hu, Z. Zhou, Y. Zhang, P. Qiao, L. Chang, "Network Intrusion Detection Based on Directed Acyclic Graph and Belief Rule Base", ETRI Journal, vol. 39, no. 4, pp. 592-604, Aug. 2017
[3] W. Wang, Y. Sheng and J. Wang, "HAST-IDS: Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection," IEEE Access, vol. 6, no. 99, pp. 1792-1806,2018.

[4] M. K. Hussein, N. Bin Zainal and A. N. Jaber, "Data security analysis for DDoS defense of cloud based networks," 2015 IEEE Student Conference on Research and Development (SCORED), Kuala Lumpur, 2015, pp. 305-310.

[5] S. Sandeep Sekharan, K. Kandasamy, "Profiling SIEM tools and correlation engines for security analytics," In Proc. Int. Conf.Wireless Com., Signal Proce. and Net.(WiSPNET), 2017, pp. 717-721.

[6] N. Hubballi and V. Surya Narayanan "False alarm minimization techniques in signature-based intrusion detection systems: Asurvey," Comput. Commun., vol. 49, pp. 1-17, Aug. 2014.

[7] A. Naser, M. A. Majid, M. F. Zolkipli and S. Anwar, "Trusting cloud computing for personal files," 2014 International Conference on Information and Communication Technology Convergence (ICTC), Busan, 2014, pp. 488-489.

[8] Y. Shen, E. Mariconti, P. Vervier, and Gianluca Stringhini, "Tiresias: Predicting Security Events Through Deep Learning," In Proc. ACMCCS 18, Toronto, Canada, 2018, pp. 592-605.

[9] Kyle Soska and Nicolas Christin, "Automatically detecting vulnerable websites before they turn malicious,", In Proc. USENIX Security Symposium., San Diego, CA, USA, 2014, pp.625-640.